Metacyclic Invariants of Knots and Links

1970 ◽  
Vol 22 (2) ◽  
pp. 193-201 ◽  
Author(s):  
R. H. Fox

To each representation ρ on a transitive permutation group P of the group G = π(S – k) of an (ordered and oriented) link k = k1 ∪ k2 ∪ … ∪ kμ in the oriented 3-sphere S there is associated an oriented open 3-manifold M = Mρ(k), the covering space of S – k that belongs to ρ. The points 01, 02, … that lie over the base point o may be indexed in such a way that the elements g of G into which the paths from oi to oj project are represented by the permutations gρ of the form , and this property characterizes M. Of course M does not depend on the actual indices assigned to the points o1, o2, … but only on the equivalence class of ρ, where two representations ρ of G onto P and ρ′ of G onto P′ are equivalent when there is an inner automorphism θ of some symmetric group in which both P and P′ are contained which is such that ρ′ = θρ.

1964 ◽  
Vol 6 (4) ◽  
pp. 196-197
Author(s):  
H. K. Farahat

In [2], Tosiro Tsuzzuku gave a proof of the following:THEOREM. Let G be a doubly transitive permutation group of degree n, let K be any commutative ring with unit element and let p be the natural representation of G by n × n permutation matrices with elements 0, 1 in K. Then ρ is decomposable as a matrix representation over K if and only ifn is an invertible element of K.For G the symmetric group this result follows from Theorems (2.1) and (4.12) of [1]. The proof given by Tsuzuku is unsatisfactory, although it is perfectly valid when K is a field. The purpose of this note is to give a correct proof of the general case.


1933 ◽  
Vol 29 (2) ◽  
pp. 257-259
Author(s):  
Garrett Birkhoff

Let be any transitive permutation group on the n symbols 1, …, n. Let be the subgroup of whose elements leave i fixed. Let ′ be the normalizer of , i.e., the subgroup of the symmetric group on 1, …, n transforming into itself. Let G′, G′1, G′2, etc., denote elements of ′. Finally, let ″ be the centralizer of , i.e., the subgroup in transforming every element of into itself.


2020 ◽  
Vol 23 (3) ◽  
pp. 393-397
Author(s):  
Wolfgang Knapp ◽  
Peter Schmid

AbstractLet G be a finite transitive permutation group of degree n, with point stabilizer {H\neq 1} and permutation character π. For every positive integer t, we consider the generalized character {\psi_{t}=\rho_{G}-t(\pi-1_{G})}, where {\rho_{G}} is the regular character of G and {1_{G}} the 1-character. We give necessary and sufficient conditions on t (and G) which guarantee that {\psi_{t}} is a character of G. A necessary condition is that {t\leq\min\{n-1,\lvert H\rvert\}}, and it turns out that {\psi_{t}} is a character of G for {t=n-1} resp. {t=\lvert H\rvert} precisely when G is 2-transitive resp. a Frobenius group.


1967 ◽  
Vol 63 (3) ◽  
pp. 647-652 ◽  
Author(s):  
Judita Cofman

D. R. Hughes stated the following conjecture: If π is a finite projective plane satisfying the condition: (C)π contains a collineation group δ inducing a doubly transitive permutation group δ* on the points of a line g, fixed under δ, then the corresponding affine plane πg is a translation plane.


2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.


Author(s):  
Marston Conder ◽  
Peter Lorimer ◽  
Cheryl Praeger

AbstractA number of constructions are given for arc-transitive digraphs, based on modifications of permutation representations of finite groups. In particular, it is shown that for every positive integer s and for any transitive permutation group p of degree k, there are infinitely many examples of a finite k-regular digraph with a group of automorphisms acting transitively on s-arcs (but not on (s + 1)-arcs), such that the stabilizer of a vertex induces the action of P on the out-neighbour set.


2011 ◽  
Vol 2011 ◽  
pp. 1-13
Author(s):  
S. Aldhafeeri ◽  
R. T. Curtis

Let be a permutation group of degree viewed as a subgroup of the symmetric group . We show that if the irreducible character of corresponding to the partition of into subsets of sizes and 2, that is, to say the character often denoted by , remains irreducible when restricted to , then = 4, 5 or 9 and , A5, or PΣL2(8), respectively, or is 4-transitive.


1967 ◽  
Vol 19 ◽  
pp. 583-589 ◽  
Author(s):  
K. I. Appel ◽  
E. T. Parker

This paper presents two results. They are:Theorem 1. Let G be a doubly transitive permutation group of degree nq + 1 where a is a prime and n < g. If G is neither alternating nor symmetric, then G has Sylow q-subgroup of order only q.Result 2. There is no unsolvable transitive permutation group of degree p = 29, 53, 149, 173, 269, 293, or 317 properly contained in the alternating group of degree p.Result 2 was demonstrated by a computation on the Illiac II computer at the University of Illinois.


1976 ◽  
Vol 28 (1) ◽  
pp. 161-167 ◽  
Author(s):  
José M. Montesinos

Letdenote the 2-fold cyclic covering space branched over a linkLin S3. We wish to describe an infinite family of prime knots and links in which each memberLexhibits two minimal 6-plat representations, where the associated Heegaard splittings ofare minimal and inequivalent. Thus each knot or link of that family admits at least two equivalence classes of 6-plat representations which are minimal.


2020 ◽  
Vol 32 (3) ◽  
pp. 713-721
Author(s):  
Andrea Lucchini ◽  
Mariapia Moscatiello ◽  
Pablo Spiga

AbstractWe show that there exists a constant a such that, for every subgroup H of a finite group G, the number of maximal subgroups of G containing H is bounded above by {a\lvert G:H\rvert^{3/2}}. In particular, a transitive permutation group of degree n has at most {an^{3/2}} maximal systems of imprimitivity. When G is soluble, generalizing a classic result of Tim Wall, we prove a much stronger bound, that is, the number of maximal subgroups of G containing H is at most {\lvert G:H\rvert-1}.


Sign in / Sign up

Export Citation Format

Share Document