On Group Rings

1970 ◽  
Vol 22 (2) ◽  
pp. 249-254 ◽  
Author(s):  
D. B. Coleman

Let R be a commutative ring with unity and let G be a group. The group ring RG is a free R-module having the elements of G as a basis, with multiplication induced byThe first theorem in this paper deals with idempotents in RG and improves a result of Connell. In the second section we consider the Jacobson radical of RG, and we prove a theorem about a class of algebras that includes RG when G is locally finite and R is an algebraically closed field of characteristic zero. The last theorem shows that if R is a field and G is a finite nilpotent group, then RG determines RP for every Sylow subgroup P of G, regardless of the characteristic of R.

1955 ◽  
Vol 7 ◽  
pp. 169-187 ◽  
Author(s):  
S. A. Jennings

Introduction. In this paper we study the (discrete) group ring Γ of a finitely generated torsion free nilpotent group over a field of characteristic zero. We show that if Δ is the ideal of Γ spanned by all elements of the form G − 1, where G ∈ , thenand the only element belonging to Δw for all w is the zero element (cf. (4.3) below).


1961 ◽  
Vol 13 ◽  
pp. 373-391
Author(s):  
K. I. Appel

A ring R over a commutative ring K, that has a basis of elements g1, g2, … , gn forming a group G under multiplication, is called a group ring of G over K. Since all group rings of a given G over a given K are isomorphic, we may speak of the group ring KG of G over X.Let π be any partition of G into non-empty sets GA, GB, … . Any subring P of KG that has a basis of elementsis a partition ring of G over K.If P is a partition ring of G over Z, the ring of integers, then the basis A, B, … for P clearly serves as a basis for a partition ring P’ = Q ⊗ P of G over Q, the field of rationals.


Author(s):  
A. Y. M. CHIN

Abstract Let R be a ring with identity of characteristic two and G a nontrivial torsion group. We show that if the units in the group ring $RG$ are all trivial, then G must be cyclic of order two or three. We also consider the case where R is a commutative ring with identity of odd prime characteristic and G is a nontrivial locally finite group. We show that in this case, if the units in $RG$ are all trivial, then G must be cyclic of order two. These results improve on a result of Herman et al. [‘Trivial units for group rings with G-adapted coefficient rings’, Canad. Math. Bull.48(1) (2005), 80–89].


1974 ◽  
Vol 17 (2) ◽  
pp. 201-202 ◽  
Author(s):  
Edward Formanek

Let F be a field of characteristic 0 and G a group such that each element of the group ring F[G] is either (right) invertible or a (left) zero divisor. Then G is locally finite.This answers a question of Herstein [1, p. 36] [2, p. 450] in the characteristic 0 case. The proof can be informally summarized as follows: Let gl,…,gn be a finite subset of G, and let1—x is not a zero divisor so it is invertible and its inverse is 1+x+x3+⋯. The fact that this series converges to an element of F[G] (a finite sum) forces the subgroup generated by g1,…,gn to be finite, proving the theorem. The formal proof is via epsilontics and takes place inside of F[G].


1970 ◽  
Vol 17 (2) ◽  
pp. 165-171 ◽  
Author(s):  
D. A. R. Wallace

Let G be a group and let K be an algebraically closed field of characteristic p>0. The twisted group algebra Kt(G) of G over K is defined as follows: let G have elements a, b, c, … and let Kt(G) be a vector space over K with basis elements , …; a multiplication is defined on this basis of Kt(G) and extended by linearity to Kt(G) by lettingwhere α(x, y) is a non-zero element of K, subject to the condition thatwhich is both necessary and sufficient for associativity. If, for all x, y ∈ G, α{x, y) is the identity of K then Kt(G) is the usual group algebra K(G) of G over K. We denote the Jacobson radical of Kt(G) by JKt(G). We are interested in the relationship between JKt(G) and JKt(H) where H is a normal subgroup of G. In § 2 we show, among other results, that if certain centralising conditions are satisfied and if JK(H) is locally nilpotent then JK(H)K(G) is also locally nilpotent and thus contained in JK(G). It is observed that in the absence of some centralising conditions these conclusions are false. We show, in particular, that if H and G/C(H) are locally finite, C(H) being the centraliser of H, and if G/H has no non-trivial elements of order p, then JK(G) coincides with the locally nilpotent ideal JK(H)K(G). The latter, and probably more significant, part of this paper is concerned with particular types of groups. We introduce the notion of a restricted SN-group and show that if G is such a group and if G has no non-trivial elements of order p then JKt(G) = {0}. It is also shown that if G is polycyclic then JKt(G) is nilpotent.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750135 ◽  
Author(s):  
Serap Sahinkaya ◽  
Gaohua Tang ◽  
Yiqiang Zhou

An element [Formula: see text] of a ring [Formula: see text] is nil-clean, if [Formula: see text], where [Formula: see text] and [Formula: see text] is a nilpotent element, and the ring [Formula: see text] is called nil-clean if each of its elements is nil-clean. In [W. Wm. McGovern, S. Raja and A. Sharp, Commutative nil clean group rings, J. Algebra Appl. 14(6) (2015) 5; Article ID: 1550094], it was proved that, for a commutative ring [Formula: see text] and an abelian group [Formula: see text], the group ring [Formula: see text] is nil-clean, iff [Formula: see text] is nil-clean and [Formula: see text] is a [Formula: see text]-group. Here, we discuss the nil-cleanness of group rings in general situation. We prove that the group ring of a locally finite [Formula: see text]-group over a nil-clean ring is nil-clean, and that the hypercenter of the group [Formula: see text] must be a [Formula: see text]-group if a group ring of [Formula: see text] is nil-clean. Consequently, the group ring of a nilpotent group over an arbitrary ring is nil-clean, iff the ring is a nil-clean ring and the group is a [Formula: see text]-group.


2019 ◽  
Vol 62 (4) ◽  
pp. 810-821 ◽  
Author(s):  
M. Tamer Koşan ◽  
Tülay Yildirim ◽  
Y. Zhou

AbstractThis paper is about rings $R$ for which every element is a sum of a tripotent and an element from the Jacobson radical $J(R)$. These rings are called semi-tripotent rings. Examples include Boolean rings, strongly nil-clean rings, strongly 2-nil-clean rings, and semi-boolean rings. Here, many characterizations of semi-tripotent rings are obtained. Necessary and sufficient conditions for a Morita context (respectively, for a group ring of an abelian group or a locally finite nilpotent group) to be semi-tripotent are proved.


1968 ◽  
Vol 9 (2) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Rayner

Letkbe any algebraically closed field, and denote byk((t)) the field of formal power series in one indeterminatetoverk. Letso thatKis the field of Puiseux expansions with coefficients ink(each element ofKis a formal power series intl/rfor some positive integerr). It is well-known thatKis algebraically closed if and only ifkis of characteristic zero [1, p. 61]. For examples relating to ramified extensions of fields with valuation [9, §6] it is useful to have a field analogous toKwhich is algebraically closed whenkhas non-zero characteristicp. In this paper, I prove that the setLof all formal power series of the form Σaitei(where (ei) is well-ordered,ei=mi|nprt,n∈ Ζ,mi∈ Ζ,ai∈k,ri∈ Ν) forms an algebraically closed field.


2014 ◽  
Vol 24 (02) ◽  
pp. 233-249
Author(s):  
Leonid A. Kurdachenko ◽  
Javier Otal ◽  
Igor Ya. Subbotin

In this paper, we study the structure of some Noetherian modules over group rings and deduce some statements regarding the structure of the groups involved. More precisely, we consider a module A over a group ring RG with the following property: A is a Noetherian RH-module for every subgroup H, which is not contained in the centralizer CG(A). If G is some generalized soluble group and R is a locally finite field or some Dedekind domain, we describe the structure of G/CG(A).


2007 ◽  
Vol 50 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Osnel Broche Cristo ◽  
César Polcino Milies

AbstractLet $R$ be a commutative ring with unity and let $G$ be a group. The group ring $RG$ has a natural involution that maps each element $g\in G$ to its inverse. We denote by $RG^-$ the set of skew symmetric elements under this involution. We study necessary and sufficient conditions for $RG^-$ to be commutative.


Sign in / Sign up

Export Citation Format

Share Document