Rings whose Elements are the Sum of a Tripotent and an Element from the Jacobson Radical

2019 ◽  
Vol 62 (4) ◽  
pp. 810-821 ◽  
Author(s):  
M. Tamer Koşan ◽  
Tülay Yildirim ◽  
Y. Zhou

AbstractThis paper is about rings $R$ for which every element is a sum of a tripotent and an element from the Jacobson radical $J(R)$. These rings are called semi-tripotent rings. Examples include Boolean rings, strongly nil-clean rings, strongly 2-nil-clean rings, and semi-boolean rings. Here, many characterizations of semi-tripotent rings are obtained. Necessary and sufficient conditions for a Morita context (respectively, for a group ring of an abelian group or a locally finite nilpotent group) to be semi-tripotent are proved.

2019 ◽  
Vol 11 (2) ◽  
pp. 264-270
Author(s):  
Peter V. Danchev

Abstract An arbitrary unital ring R is called feebly nil-clean if any its element is of the form q + e − f, where q is a nilpotent and e, f are idempotents with ef = fe. For any commutative ring R and any abelian group G, we find a necessary and sufficient condition when the group ring R(G) is feebly nil-clean only in terms of R, G and their sections. Our result refines establishments due to McGovern et al. in J. Algebra Appl. (2015) on nil-clean rings and Danchev-McGovern in J. Algebra (2015) on weakly nil-clean rings, respectively.


1970 ◽  
Vol 22 (2) ◽  
pp. 249-254 ◽  
Author(s):  
D. B. Coleman

Let R be a commutative ring with unity and let G be a group. The group ring RG is a free R-module having the elements of G as a basis, with multiplication induced byThe first theorem in this paper deals with idempotents in RG and improves a result of Connell. In the second section we consider the Jacobson radical of RG, and we prove a theorem about a class of algebras that includes RG when G is locally finite and R is an algebraically closed field of characteristic zero. The last theorem shows that if R is a field and G is a finite nilpotent group, then RG determines RP for every Sylow subgroup P of G, regardless of the characteristic of R.


1979 ◽  
Vol 20 (3) ◽  
pp. 411-420 ◽  
Author(s):  
L.R. Vermani

A characterization of induced central extensions which gives an explicit relationship between induced central extensions and n-stem extensions is obtained. Using the characterization, necessary and sufficient conditions for a central extension of an abelian group by a nilpotent group of class n to be a Baer sum of an induced central extension and an extension of class n are obtained.


1998 ◽  
Vol 41 (4) ◽  
pp. 481-487 ◽  
Author(s):  
M. M. Parmenter ◽  
E. Spiegel ◽  
P. N. Stewart

AbstractLet R be a ring with 1 and P(R) the periodic radical of R. We obtain necessary and sufficient conditions for P(RG) = 0 when RG is the group ring of an FC group G and R is commutative. We also obtain a complete description of when I(X, R) is the incidence algebra of a locally finite partially ordered set X and R is commutative.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750135 ◽  
Author(s):  
Serap Sahinkaya ◽  
Gaohua Tang ◽  
Yiqiang Zhou

An element [Formula: see text] of a ring [Formula: see text] is nil-clean, if [Formula: see text], where [Formula: see text] and [Formula: see text] is a nilpotent element, and the ring [Formula: see text] is called nil-clean if each of its elements is nil-clean. In [W. Wm. McGovern, S. Raja and A. Sharp, Commutative nil clean group rings, J. Algebra Appl. 14(6) (2015) 5; Article ID: 1550094], it was proved that, for a commutative ring [Formula: see text] and an abelian group [Formula: see text], the group ring [Formula: see text] is nil-clean, iff [Formula: see text] is nil-clean and [Formula: see text] is a [Formula: see text]-group. Here, we discuss the nil-cleanness of group rings in general situation. We prove that the group ring of a locally finite [Formula: see text]-group over a nil-clean ring is nil-clean, and that the hypercenter of the group [Formula: see text] must be a [Formula: see text]-group if a group ring of [Formula: see text] is nil-clean. Consequently, the group ring of a nilpotent group over an arbitrary ring is nil-clean, iff the ring is a nil-clean ring and the group is a [Formula: see text]-group.


2015 ◽  
Vol 22 (01) ◽  
pp. 169-180 ◽  
Author(s):  
Yanyan Gao ◽  
Jianlong Chen ◽  
Yuanlin Li

A ring with involution ∗ is called ∗-clean if each of its elements is the sum of a unit and a projection. It is obvious that ∗-clean rings are clean. Vaš asked whether there exists a clean ring with involution that is not ∗-clean. In this paper, we investigate when a group ring RG is ∗-clean, where ∗ is the classical involution on RG. We obtain necessary and sufficient conditions for RG to be ∗-clean, where R is a commutative local ring and G is one of the groups C3, C4, S3 and Q8. As a consequence, we provide many examples of group rings which are clean but not ∗-clean.


10.37236/1211 ◽  
1995 ◽  
Vol 2 (1) ◽  
Author(s):  
Carl Droms ◽  
Brigitte Servatius ◽  
Herman Servatius

We expand on Tutte's theory of $3$-blocks for $2$-connected graphs, generalizing it to apply to infinite, locally finite graphs, and giving necessary and sufficient conditions for a labeled tree to be the $3$-block tree of a $2$-connected graph.


1974 ◽  
Vol 26 (1) ◽  
pp. 121-129 ◽  
Author(s):  
S. M. Woods

The aim of this paper is to find necessary and sufficient conditions on a group G and a ring A for the group ring AG to be semi-perfect. A complete answer is given in the commutative case, in terms of the polynomial ring A[X] (Theorem 5.8). In the general case examples are given which indicate a very strong interaction between the properties of A and those of G. Partial answers to the question are given in Theorem 3.2, Proposition 4.2 and Corollary 4.3.


1979 ◽  
Vol 28 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Nicholas S. Ford

AbstractLet R be a commutative ring with identity, and let A be a finitely generated R-algebra with Jacobson radical N and center C. An R-inertial subalgebra of A is a R-separable subalgebra B with the property that B+N=A. Suppose A is separable over C and possesses a finite group G of R-automorphisms whose restriction to C is faithful with fixed ring R. If R is an inertial subalgebra of C, necessary and sufficient conditions for the existence of an R-inertial subalgebra of A are found when the order of G is a unit in R. Under these conditions, an R-inertial subalgebra B of A is characterized as being the fixed subring of a group of R-automorphisms of A. Moreover, A ⋍ B ⊗R C. Analogous results are obtained when C has an R-inertial subalgebra S ⊃ R.


2014 ◽  
Vol 57 (3) ◽  
pp. 609-613 ◽  
Author(s):  
Alireza Nasr-Isfahani

AbstractWe provide necessary and sufficient conditions for a skew polynomial ring of derivation type to be semiprimitive when the base ring has no nonzero nil ideals. This extends existing results on the Jacobson radical of skew polynomial rings of derivation type.


Sign in / Sign up

Export Citation Format

Share Document