On the Ranges of Certain Fractional Integrals

1972 ◽  
Vol 24 (6) ◽  
pp. 1198-1216 ◽  
Author(s):  
P. G. Rooney

Suppose 1 ≦ P < ∞, μ is real, and denote by Lμ,p the collection of functions f, measurable on (0, ∞ ), and which satisfy1.1Also denote by [X] the collection of bounded operators from a Banach space X to itself. For v > 0, Re α > 0, Re β > 0, let1.2and1.3where ξ and η are complex numbers. Iv,α,ξ and Jv,β,η, are generalizations of the Riemann-Liouville and Weyl fractional integrals respectively, and consequently we shall refer to them as fractional integrals.

1983 ◽  
Vol 24 (1) ◽  
pp. 1-5
Author(s):  
Adnan A. S. Jibril

Let T be a linear operator acting in a Banach space X. It has been shown by Smart [5] and Ringrose [3] that, if X is reflexive, then T is well-bounded if and only if it may be expressed in the formwhere {E(λ)} is a suitable family of projections in X and the integral exists as the strong limit of Riemann sums.


1978 ◽  
Vol 21 (1) ◽  
pp. 17-23 ◽  
Author(s):  
M. J. Crabb ◽  
J. Duncan

Let A be a complex unital Banach algebra. An element u∈A is a norm unitary if(For the algebra of all bounded operators on a Banach space, the norm unitaries arethe invertible isometries.) Given a norm unitary u∈A, we have Sp(u)⊃Γ, where Sp(u) denotes the spectrum of u and Γ denotes the unit circle in C. If Sp(u)≠Γ we may suppose, by replacing eiθu, that . Then there exists h ∈ A such that


1969 ◽  
Vol 10 (1) ◽  
pp. 73-76 ◽  
Author(s):  
J. Duncan

In this note we shall employ the notation of [1] without further mention. Thus X denotes a normed space and P the subset of X × X′ given byGiven a subalgebra of B(X), the set {Φ(X,f):(x,f) ∈ P} of evaluation functional on is denoted by II. We shall prove that if X is a Banach space and if contains all the bounded operators of finite rank, then Π is norm closed in ′. We give an example to show that Π need not be weak* closed in ″. We show also that FT need not be norm closed in ″ if X is not complete.


1978 ◽  
Vol 30 (5) ◽  
pp. 1045-1069 ◽  
Author(s):  
I. Gohberg ◽  
P. Lancaster ◽  
L. Rodman

Let be a complex Banach space and the algebra of bounded linear operators on . In this paper we study functions from the complex numbers to of the form


1968 ◽  
Vol 8 (1) ◽  
pp. 119-127 ◽  
Author(s):  
S. J. Bernau

Recall that the spectrum, σ(T), of a linear operator T in a complex Banach space is the set of complex numbers λ such that T—λI does not have a densely defined bounded inverse. It is known [7, § 5.1] that σ(T) is a closed subset of the complex plane C. If T is not bounded, σ(T) may be empty or the whole of C. If σ(T) ≠ C and T is closed the spectral mapping theorem, is valid for complex polynomials p(z) [7, §5.7]. Also, if T is closed and λ ∉ σ(T), (T–λI)−1 is everywhere defined.


1986 ◽  
Vol 28 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Vladimir Rakočević

Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear operators on X by B (X) (K(X)). Let σ(A) and σa(A) denote, respectively, the spectrum and approximate point spectrum of an element A of B(X). Setσem(A)and σeb(A) are respectively Schechter's and Browder's essential spectrum of A ([16], [9]). σea (A) is a non-empty compact subset of the set of complex numbers ℂ and it is called the essential approximate point spectrum of A ([13], [14]). In this note we characterize σab(A) and show that if f is a function analytic in a neighborhood of σ(A), then σab(f(A)) = f(σab(A)). The relation between σa(A) and σeb(A), that is exhibited in this paper, resembles the relation between the σ(A) and the σeb(A), and it is reasonable to call σab(A) Browder's essential approximate point spectrum of A.


1974 ◽  
Vol 26 (5) ◽  
pp. 1086-1089 ◽  
Author(s):  
Edward Formanek

Let G be a discrete group and let H = L2(G), with norm | |. Let B(H) be the ring of bounded operators on H with the normThe right regular representation of G on H induces an injection ρ : C[G] → B(H), and W(G) is the closure of the image of ρ in the weak operator topology on B(H) (C = complex numbers). Using ρ, we identify C[G] with its image in W(G).


1978 ◽  
Vol 31 (4) ◽  
pp. 845-857 ◽  
Author(s):  
C. K. Fong ◽  
A. R. Sourour

Let Aj and Bj (1 ≦ j ≦ m) be bounded operators on a Banach space ᚕ and let Φ be the mapping on , the algebra of bounded operators on ᚕ, defined by(1)We give necessary and sufficient conditions for Φ to be identically zero or to be a compact map or (in the Hilbert space case) for the induced mapping on the Calkin algebra to be identically zero. These results are then used to obtain some results about inner derivations and, more generally, about mappings of the formFor example, it is shown that the commutant of the range of C(S, T) is “small” unless S and T are scalars.


1970 ◽  
Vol 22 (5) ◽  
pp. 1016-1034 ◽  
Author(s):  
J. Henniger

A complex function on the real line is said to be bounded in mean square if it is locally in L2 (i.e. on each finite interval) and satisfies(1.1)The set of all such functions clearly forms a linear space over the complex numbers and is a Banach space B under the norm ‖·‖B defined by (1.1). This space, among others, has been discussed by Beurling in [1], where it was shown to be the dual, in the Banach space sense, of a certain Banach (convolution) algebra of functions. We have used Beurling's characterization of B and others of his results throughout this paper, and indeed the essence of one or two of the proofs has been derived from his theorems.


1970 ◽  
Vol 11 (1) ◽  
pp. 72-80 ◽  
Author(s):  
E. Spence

The Banach space lp(p≥1) is the space of all infinite sequences x = (x1, x2, x3, …) of real or complex numbers such that is convergent, with the norm defined byThe unit sphere S of lp is the set of all points x ∈ lp with ∥x∥ ≤ 1 and the sphere of radius a ≥ 0 centred at y ∈ lp is denoted by Sa(y), so that


Sign in / Sign up

Export Citation Format

Share Document