A Simple C*-Algebra Generated by Two Finite-Order Unitaries

1979 ◽  
Vol 31 (4) ◽  
pp. 867-880 ◽  
Author(s):  
Man-Duen Choi

We present an example which illustrates several peculiar phenomena that may occur in the theory of C*-algebras. In particular, we show that a C*-subalgebra of a nuclear (amenable) C*-algebra need not be nuclear (amenable).The central object of this paper is a pair of abstract unitary matrices,acting on a common Hilbert space. For an explicit construction, we may decompose an infinite-dimensional Hilbert space H into H = H0 ⴲ H1 , H1 = Hα ⴲ Hβ with dim H0 = dim H1 = dim Hα = dim Hβ, letting u, v Є B(H) be any two unitary operators such thatand u2 = 1, v3 = 1. Whereas many choices of u, v are possible, it might be surprising to see that C*(u, v), the C*-algebra generated by u and v, is algebraically unique; namely, if (u1,V1) is another pair of such unitaries, then C*(u, v) is canonically *-isomorphic with C*(u1, v1) (Theorem 2.6).

1978 ◽  
Vol 21 (2) ◽  
pp. 143-147
Author(s):  
S. J. Cho

Let be a separable complex infinite dimensional Hilbert space, the algebra of bounded operators in the ideal of compact operators, and the quotient map. Throughout this paper A denotes a separable nuclear C*-algebra with unit. An extension of A is a unital *-monomorphism of A into . Two extensions τ1 and τ2 are strongly (weakly) equivalent if there exists a unitary (Fredholm partial isometry) U in such thatfor all a in A.


1987 ◽  
Vol 29 (2) ◽  
pp. 245-248 ◽  
Author(s):  
Fuad Kittaneh

Let H denote a separable, infinite dimensional Hilbert space. Let B(H), C2 and C1 denote the algebra of all bounded linear operators acting on H, the Hilbert–Schmidt class and the trace class in B(H) respectively. It is well known that C2 and C1 each form a two-sided-ideal in B(H) and C2 is itself a Hilbert space with the inner productwhere {ei} is any orthonormal basis of H and tr(.) is the natural trace on C1. The Hilbert–Schmidt norm of X ∈ C2 is given by ⅡXⅡ2=(X, X)½.


2012 ◽  
Vol 64 (4) ◽  
pp. 755-777 ◽  
Author(s):  
Lawrence G. Brown ◽  
Hyun Ho Lee

AbstractWe study projections in the corona algebra of C(X) ⊗ K, where K is the C*-algebra of compact operators on a separable infinite dimensional Hilbert space and X = [0, 1], [0,∞), (−∞,∞), or [0, 1]/﹛0, 1﹜. Using BDF's essential codimension, we determine conditions for a projection in the corona algebra to be liftable to a projection in the multiplier algebra. We also determine the conditions for two projections to be equal in K0, Murray-von Neumann equivalent, unitarily equivalent, or homotopic. In light of these characterizations, we construct examples showing that the equivalence notions above are all distinct.


2008 ◽  
Vol 60 (5) ◽  
pp. 1001-1009 ◽  
Author(s):  
Yves de Cornulier ◽  
Romain Tessera ◽  
Alain Valette

AbstractOur main result is that a finitely generated nilpotent group has no isometric action on an infinite-dimensional Hilbert space with dense orbits. In contrast, we construct such an action with a finitely generated metabelian group.


2004 ◽  
Vol 2 (1) ◽  
pp. 71-95 ◽  
Author(s):  
George Isac ◽  
Monica G. Cojocaru

In the first part of this paper we present a representation theorem for the directional derivative of the metric projection operator in an arbitrary Hilbert space. As a consequence of the representation theorem, we present in the second part the development of the theory of projected dynamical systems in infinite dimensional Hilbert space. We show that this development is possible if we use the viable solutions of differential inclusions. We use also pseudomonotone operators.


2009 ◽  
Vol 80 (1) ◽  
pp. 83-90 ◽  
Author(s):  
SHUDONG LIU ◽  
XIAOCHUN FANG

AbstractIn this paper, we construct the unique (up to isomorphism) extension algebra, denoted by E∞, of the Cuntz algebra 𝒪∞ by the C*-algebra of compact operators on a separable infinite-dimensional Hilbert space. We prove that two unital monomorphisms from E∞ to a unital purely infinite simple C*-algebra are approximately unitarily equivalent if and only if they induce the same homomorphisms in K-theory.


2005 ◽  
Vol 79 (3) ◽  
pp. 391-398
Author(s):  
Kazunori Kodaka

AbstractLet A be a C*-algebra and K the C*-algebra of all compact operators on a countably infinite dimensional Hilbert space. In this note, we shall show that there is an isomorphism of a semigroup of equivalence classes of certain partial automorphisms of A ⊗ K onto a semigroup of equivalence classes of certain countably generated A-A-Hilbert bimodules.


1989 ◽  
Vol 41 (6) ◽  
pp. 1021-1089 ◽  
Author(s):  
N. Christopher Phillips

In topology, the representable K-theory of a topological space X is defined by the formulas RK0(X) = [X,Z x BU] and RKl(X) = [X, U], where square brackets denote sets of homotopy classes of continuous maps, is the infinite unitary group, and BU is a classifying space for U. (Note that ZxBU is homotopy equivalent to the space of Fredholm operators on a separable infinite-dimensional Hilbert space.) These sets of homotopy classes are made into abelian groups by using the H-group structures on Z x BU and U. In this paper, we give analogous formulas for the representable K-theory for α-C*-algebras defined in [20].


1971 ◽  
Vol 23 (3) ◽  
pp. 445-450 ◽  
Author(s):  
L. Terrell Gardner

0. In [3], Fell introduced a topology on Rep (A,H), the collection of all non-null but possibly degenerate *-representations of the C*-algebra A on the Hilbert space H. This topology, which we will call the Fell topology, can be described by giving, as basic open neighbourhoods of π0 ∈ Rep(A, H), sets of the formwhere the ai ∈ A, and the ξj ∈ H(π0), the essential space of π0 [4].A principal result of [3, Theorem 3.1] is that if the Hilbert dimension of H is large enough to admit all irreducible representations of A, then the quotient space Irr(A, H)/∼ can be identified with the spectrum (or “dual“) Â of A, in its hull-kernel topology.


Sign in / Sign up

Export Citation Format

Share Document