Arithmetic Invariants of Simplicial Complexes

1980 ◽  
Vol 32 (6) ◽  
pp. 1306-1310
Author(s):  
M. Brown ◽  
A. G. Wasserman

What invariants of a finite simplicial complex K can be computed solely from the values v0(K), V1(K), …, vi(K), … where Vi(K) is the number of i-simplexes of K? The Euler chracteristic χ(K) = Σ i (– 1)ivi(K) is a subdivision invariant and a homotopy invariant while the dimension of K is a subdivision invariant and homeomorphism invariant. In [3], Wall has shown that the Euler chracteristic is the only linear function to the integers that is a subdivision invariant. In this paper we show that the only subdivision invariants (linear or not) of K are the Euler characteristic and the dimension. More precisely we prove the following theorem.

1966 ◽  
Vol 18 ◽  
pp. 92-96 ◽  
Author(s):  
C. T. C. Wall

The following problem was raised by M. Brown. Let K be a finite simplicial complex, of dimension n, with αi(K) simplexes of dimension i. Which of the linear combinations have the property that they are unaltered by all stellar subdivisions of K? The most obvious invariant is the Euler characteristic; there are also some identities that hold for manifolds (2), so, if K is a manifold, they remain true on subdivision. We shall see that no other expressions are ever invariant, but if K resembles a manifold in codimensions ⩽2r (in a sense defined below) that r of the relations continue to hold.


2017 ◽  
Vol 60 (3) ◽  
pp. 470-477 ◽  
Author(s):  
Urtzi Buijs ◽  
Yves Félix ◽  
Aniceto Murillo ◽  
Daniel Tanré

AbstractIn a previous work, we associated a complete diòerential graded Lie algebra to any finite simplicial complex in a functorial way. Similarly, we also have a realization functor fromthe category of complete diòerential graded Lie algebras to the category of simplicial sets. We have already interpreted the homology of a Lie algebra in terms of homotopy groups of its realization. In this paper, we begin a dictionary between models and simplicial complexes by establishing a correspondence between the Deligne groupoid of the model and the connected components of the finite simplicial complex.


10.37236/2552 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Jennifer Biermann ◽  
Adam Van Tuyl

Given any finite simplicial complex $\Delta$, we show how to construct from a colouring $\chi$ of $\Delta$ a new simplicial complex $\Delta_{\chi}$ that is balanced and vertex decomposable. In addition, the $h$-vector of $\Delta_{\chi}$ is precisely the $f$-vector of $\Delta$.  Our construction generalizes the "whiskering'' construction of Villarreal, and Cook and Nagel. We also reverse this construction to prove a special case of a conjecture of Cook and Nagel, and Constantinescu and Varbaro on the $h$-vectors of flag complexes.


10.37236/1245 ◽  
1996 ◽  
Vol 3 (1) ◽  
Author(s):  
Art M. Duval

Björner and Wachs generalized the definition of shellability by dropping the assumption of purity; they also introduced the $h$-triangle, a doubly-indexed generalization of the $h$-vector which is combinatorially significant for nonpure shellable complexes. Stanley subsequently defined a nonpure simplicial complex to be sequentially Cohen-Macaulay if it satisfies algebraic conditions that generalize the Cohen-Macaulay conditions for pure complexes, so that a nonpure shellable complex is sequentially Cohen-Macaulay. We show that algebraic shifting preserves the $h$-triangle of a simplicial complex $K$ if and only if $K$ is sequentially Cohen-Macaulay. This generalizes a result of Kalai's for the pure case. Immediate consequences include that nonpure shellable complexes and sequentially Cohen-Macaulay complexes have the same set of possible $h$-triangles.


10.37236/4894 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Mina Bigdeli ◽  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Antonio Macchia

Let $I\subset K[x_1,\ldots,x_n]$ be  a zero-dimensional monomial ideal, and $\Delta(I)$ be the simplicial complex whose Stanley--Reisner ideal is the polarization of $I$. It follows from a result of Soleyman Jahan that $\Delta(I)$ is shellable. We give a new short proof of this fact by providing an explicit shelling. Moreover, we show that  $\Delta(I)$ is even vertex decomposable. The ideal $L(I)$, which is defined to be the Stanley--Reisner ideal of the Alexander dual of $\Delta(I)$, has a linear resolution which is cellular and supported on a regular CW-complex. All powers of $L(I)$ have a linear resolution. We compute $\mathrm{depth}\ L(I)^k$ and show that $\mathrm{depth}\ L(I)^k=n$ for all $k\geq n$.


10.37236/1900 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Jakob Jonsson

We consider topological aspects of decision trees on simplicial complexes, concentrating on how to use decision trees as a tool in topological combinatorics. By Robin Forman's discrete Morse theory, the number of evasive faces of a given dimension $i$ with respect to a decision tree on a simplicial complex is greater than or equal to the $i$th reduced Betti number (over any field) of the complex. Under certain favorable circumstances, a simplicial complex admits an "optimal" decision tree such that equality holds for each $i$; we may hence read off the homology directly from the tree. We provide a recursive definition of the class of semi-nonevasive simplicial complexes with this property. A certain generalization turns out to yield the class of semi-collapsible simplicial complexes that admit an optimal discrete Morse function in the analogous sense. In addition, we develop some elementary theory about semi-nonevasive and semi-collapsible complexes. Finally, we provide explicit optimal decision trees for several well-known simplicial complexes.


10.37236/1093 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Jakob Jonsson

Let $S_{m,n}$ be the graph on the vertex set ${\Bbb Z}_m \times {\Bbb Z}_n$ in which there is an edge between $(a,b)$ and $(c,d)$ if and only if either $(a,b) = (c,d\pm 1)$ or $(a,b) = (c \pm 1,d)$ modulo $(m,n)$. We present a formula for the Euler characteristic of the simplicial complex $\Sigma_{m,n}$ of independent sets in $S_{m,n}$. In particular, we show that the unreduced Euler characteristic of $\Sigma_{m,n}$ vanishes whenever $m$ and $n$ are coprime, thereby settling a conjecture in statistical mechanics due to Fendley, Schoutens and van Eerten. For general $m$ and $n$, we relate the Euler characteristic of $\Sigma_{m,n}$ to certain periodic rhombus tilings of the plane. Using this correspondence, we settle another conjecture due to Fendley et al., which states that all roots of $\det (xI-T_m)$ are roots of unity, where $T_m$ is a certain transfer matrix associated to $\{\Sigma_{m,n} : n \ge 1\}$. In the language of statistical mechanics, the reduced Euler characteristic of $\Sigma_{m,n}$ coincides with minus the partition function of the corresponding hard square model with activity $-1$.


Author(s):  
Khalid Hatim ◽  
Azeddine Baalal

In this paper, we construct a new framework that’s we call the weighted [Formula: see text]-simplicial complex and we define its spectral gap. An upper bound for our spectral gap is given by generalizing the Cheeger constant. The lower bound for our spectral gap is obtained from the first nonzero eigenvalue of the Laplacian acting on the functions of certain weighted [Formula: see text]-simplicial complexes.


2012 ◽  
Vol 55 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Kotaro Mine ◽  
Katsuro Sakai

AbstractLet |K| be the metric polyhedron of a simplicial complex K. In this paper, we characterize a simplicial subdivision K′ of K preserving the metric topology for |K| as the one such that the set K′(0) of vertices of K′ is discrete in |K|. We also prove that two such subdivisions of K have such a common subdivision.


1980 ◽  
Vol 32 (4) ◽  
pp. 783-803
Author(s):  
Michael A. Penna

Every finite simplicial complex has a tangent bundle in the category of simplicial bundles (see [9]). The goal of this paper is to classify simplicial bundles, and, as an application of this result, to construct Euler classes for a large class of combinatorial manifolds. This construction is closely related to [3] and [4].


Sign in / Sign up

Export Citation Format

Share Document