On the Points of Inflection of Bessel Functions of Positive Order, II

1991 ◽  
Vol 43 (3) ◽  
pp. 628-651 ◽  
Author(s):  
R. Wong ◽  
T. Lang

Let jν, 1, jν,2, … denote the positive zeros of the Bessel function Jν(x), and similarly, let j'v,1, j'v,2, … denote the positive zeros of J'v(x), which are the positive critical points of Jv(x). It is well-known that when v is positive, both jν ,k. it and j'ν k are increasing functions of ν; see, e.g., [12, pp. 246 and 248]. Recently, Lorch and Szego [6] have attempted to show that the same is true for the positive zeros j″v,1, j″v,2, … of j″v(x), which are the positive inflection points of Jv(x).

1990 ◽  
Vol 42 (5) ◽  
pp. 933-948 ◽  
Author(s):  
Lee Lorch ◽  
Peter Szego

The primary concern addressed here is the variation with respect to the order v > 0 of the zeros jʺvk of fixed rank of the second derivative of the Bessel function Jv(x) of the first kind. It is shown that jʺv1 increases 0 < v < ∞ (Theorem 4.1) and that jʺvk increases in 0 < v ≤ 3838 for fixed k = 2, 3,… (Theorem 10.1).


1991 ◽  
Vol 43 (6) ◽  
pp. 1309-1322 ◽  
Author(s):  
Lee Lorch ◽  
Martin E. Muldoon ◽  
Peter Szego

AbstractWe consider the positive zeros j″vk, k = 1, 2,…, of the second derivative of the Bessel function Jν(x). We are interested first in how many zeros there are on the interval (0,jν1), where jν1 is the smallest positive zero of Jν(x). We show that there exists a number ƛ = —0.19937078… such that and . Moreover, j″v1 decreases to 0 and j″ν2 increases to j″01 as ν increases from ƛ to 0. Further, j″vk increases in —1 < ν< ∞, for k = 3,4,… Monotonicity properties are established also for ordinates, and the slopes at the ordinates, of the points of inflection when — 1 < ν < 0.


Asymptotic expansions are derived for the inflection points j " vk of the Bessel function J v ( x ), as k → ∞ for fixed v and as v → ∞ for fixed k . Also derived is an asymptotic expansion of J v ( j" vk ) as v → ∞. Finally, we prove that j" vʎ ≽ v √2 if ʎ ≽ (0.07041) v + 0.25 and v ≽ 7, which implies by a recent result of Lorch & Szego that the sequence {| J v ( j" vk )|} is decreasing, for k ═ ʎ , ʎ + 1, ʎ + 2,....


Author(s):  
Yongping Liu

Denote by Jν the Bessel function of the first kind of order ν and μν,k is its kth positive zero. For ν > ½, a theorem of Lorch, Muldoon and Szegö states that the sequence [Formula: see text] is decreasing, another theorem of theirs states that the sequence [Formula: see text] has higher monotonicity properties. In the present paper, we proved that when ν > ½ the sequence [Formula: see text] has higher monotonicity properties and the properties imply those of the sequence of the local maxima of the function x-ν+1|Jν-1(x)|, x ∈ (0, ∞), i.e. the sequence [Formula: see text] has higher monotonicity properties.


1. Although many results are known concerning the zeros of Bessel functions,* the greater number of these results are of practical importance only in the case of functions of comparatively low order. For example, McMahon has given a formula† for calculating the zeros of the Bessel function J n ( x ), namely that, if k 1 , k 2 , k 3 , ..., are the positive zeros arranged in ascending order of magnitude, then ks = β- 4 n 2 -1/8β - 4(4 n 2 -1)(28 n 2 -31)/3.(8β) 3 -..., where β = 1/4 π (2 n +4 s —1).


2005 ◽  
Vol 2005 (18) ◽  
pp. 2863-2870
Author(s):  
Hacen Dib

Using the Bessel-Muirhead system, we can express theK-Bessel function defined on a Jordan algebra as a linear combination of the J-solutions. We determine explicitly the coefficients when the rank of this Jordan algebra is three after a reduction to the rank two. The main tools are some algebraic identities developed for this occasion.


2019 ◽  
Vol 38 (6) ◽  
pp. 73-83
Author(s):  
K. S. Nisar ◽  
D. L. Suthar ◽  
Sunil Dutt Purohit ◽  
Hafte Amsalu

The aim of this paper is to evaluate two integral formulas involving a finite product of the generalized Bessel function of the first kind and multivariable polynomial functions which results are expressed in terms of the generalized Lauricella functions. The major results presented here are of general character and easily reducible to unique and well-known integral formulae.


Author(s):  
Jordanka Paneva-Konovska

AbstractThe Delerue hyper-Bessel functions that appeared as a multi-index generalizations of the Bessel function of the first type, are closely related to the hyper-Bessel differential operators of arbitrary order, introduced by Dimovski. In this work we consider an enumerable family of hyper-Bessel functions and study the convergence of series in such a kind of functions. The obtained results are analogues to the ones in the classical theory of the widely used power series, like Cauchy-Hadamard, Abel and Fatou theorem.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
D. Baleanu ◽  
P. Agarwal ◽  
S. D. Purohit

We apply generalized operators of fractional integration involving Appell’s functionF3(·)due to Marichev-Saigo-Maeda, to the product of the generalized Bessel function of the first kind due to Baricz. The results are expressed in terms of the multivariable generalized Lauricella functions. Corresponding assertions in terms of Saigo, Erdélyi-Kober, Riemann-Liouville, and Weyl type of fractional integrals are also presented. Some interesting special cases of our two main results are presented. We also point out that the results presented here, being of general character, are easily reducible to yield many diverse new and known integral formulas involving simpler functions.


Sign in / Sign up

Export Citation Format

Share Document