Sums of Reciprocal Powers of Terms in Arithmetic Sequence

1963 ◽  
Vol 6 (1) ◽  
pp. 109-112
Author(s):  
E. L. Whitney

A note by N. Kimura gives the sumsexplicitly linearly interms of the sums for positive integers p.We note here that by a similar simple method, the Bernoulli numbers and Euler numbers may be related similarly to these sums.

Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4833-4844 ◽  
Author(s):  
Eda Yuluklu ◽  
Yilmaz Simsek ◽  
Takao Komatsu

The aim of this paper is to give some new identities and relations related to the some families of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and second kinds, the central factorial numbers and also the numbers y1(n,k,?) and y2(n,k,?) which are given Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


1991 ◽  
Vol 43 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Tom C. Brown ◽  
Voijtech Rödl

Our main result is that if G(x1, …, xn) = 0 is a system of homogeneous equations such that for every partition of the positive integers into finitely many classes there are distinct y1,…, yn in one class such that G(y1, …, yn) = 0, then, for every partition of the positive integers into finitely many classes there are distinct Z1, …, Zn in one class such thatIn particular, we show that if the positive integers are split into r classes, then for every n ≥ 2 there are distinct positive integers x1, x1, …, xn in one class such thatWe also show that if [1, n6 − (n2 − n)2] is partitioned into two classes, then some class contains x0, x1, …, xn such that(Here, x0, x2, …, xn are not necessarily distinct.)


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


1958 ◽  
Vol 10 ◽  
pp. 222-229 ◽  
Author(s):  
J. R. Blum ◽  
H. Chernoff ◽  
M. Rosenblatt ◽  
H. Teicher

Let {Xn} (n = 1, 2 , …) be a stochastic process. The random variables comprising it or the process itself will be said to be interchangeable if, for any choice of distinct positive integers i 1, i 2, H 3 … , ik, the joint distribution of depends merely on k and is independent of the integers i 1, i 2, … , i k. It was shown by De Finetti (3) that the probability measure for any interchangeable process is a mixture of probability measures of processes each consisting of independent and identically distributed random variables.


2015 ◽  
Vol 58 (4) ◽  
pp. 858-868 ◽  
Author(s):  
Kenneth S. Williams

AbstractLet denote the Dedekind eta function. We use a recent productto- sum formula in conjunction with conditions for the non-representability of integers by certain ternary quadratic forms to give explicitly ten eta quotientssuch that the Fourier coefficients c(n) vanish for all positive integers n in each of infinitely many non-overlapping arithmetic progressions. For example, we show that if we have c(n) = 0 for all n in each of the arithmetic progressions


Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 543-549
Author(s):  
Buket Simsek

The aim of this present paper is to establish and study generating function associated with a characteristic function for the Bernstein polynomials. By this function, we derive many identities, relations and formulas relevant to moments of discrete random variable for the Bernstein polynomials (binomial distribution), Bernoulli numbers of negative order, Euler numbers of negative order and the Stirling numbers.


1981 ◽  
Vol 33 (3) ◽  
pp. 606-617 ◽  
Author(s):  
D. J. Leeming ◽  
R. A. Macleod

We define infinitely many sequences of integers one sequence for each positive integer k ≦ 2 by(1.1)where are the k-th roots of unity and (E(k))n is replaced by En(k) after multiplying out. An immediate consequence of (1.1) is(1.2)Therefore, we are interested in numbers of the form Esk(k) (s = 0, 1, 2, …; k = 2, 3, …).Some special cases have been considered in the literature. For k = 2, we obtain the Euler numbers (see e.g. [8]). The case k = 3 is considered briefly by D. H. Lehmer [7], and the case k = 4 by Leeming [6] and Carlitz ([1]and [2]).


1966 ◽  
Vol 9 (4) ◽  
pp. 515-516
Author(s):  
Paul G. Bassett

Let n be an arbitrary but fixed positive integer. Let Tn be the set of all monotone - increasing n-tuples of positive integers:1Define2In this note we prove that ϕ is a 1–1 mapping from Tn onto {1, 2, 3,…}.


1961 ◽  
Vol 12 (3) ◽  
pp. 133-138 ◽  
Author(s):  
L. Carlitz

1. Guinand (2) has obtained finite identities of the typewhere m, n, N are positive integers and eitherorwhere γ is Euler's constant and the notation ∑′ indicates that when x is integral the term r = x is multiplied by ½. Clearly there is no loss of generality in taking N = 1 in (1.1).


Sign in / Sign up

Export Citation Format

Share Document