Finite Topological Spaces and Quasi-Uniform Structures

1969 ◽  
Vol 12 (6) ◽  
pp. 771-775 ◽  
Author(s):  
P. Fletcher

In [6], H. Sharp gives a matrix characterization of each topology on a finite set X = {x1, x2,…, xn}. The study of quasi-uniform spaces provides a more natural and obviously equivalent characterization of finite topological spaces. With this alternate characterization, results of quasi-uniform theory can be used to obtain simple proofs of some of the major theorems of [1], [3] and [6]. Moreover, the class of finite topological spaces has a quasi-uniform property which is of interest in its own right. All facts concerning quasi-uniform spaces which are used in this paper can be found in [4].

2015 ◽  
Vol 26 (03) ◽  
pp. 1550032 ◽  
Author(s):  
Richard W. M. Alves ◽  
Victor H. L. Rocha ◽  
Josiney A. Souza

This paper proves that uniform spaces and admissible spaces form the same class of topological spaces. This result characterizes a completely regular space as a topological space that admits an admissible family of open coverings. In addition, the admissible family of coverings provides an interesting methodology of studying aspects of uniformity and dynamics in completely regular spaces.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 116
Author(s):  
Qi Liu ◽  
Yongjin Li

In this paper, we will introduce a new geometric constant LYJ(λ,μ,X) based on an equivalent characterization of inner product space, which was proposed by Moslehian and Rassias. We first discuss some equivalent forms of the proposed constant. Next, a characterization of uniformly non-square is given. Moreover, some sufficient conditions which imply weak normal structure are presented. Finally, we obtain some relationship between the other well-known geometric constants and LYJ(λ,μ,X). Also, this new coefficient is computed for X being concrete space.


2021 ◽  
Vol 40 (1) ◽  
pp. 1277-1285
Author(s):  
Zhen-yu Jin ◽  
Cong-hua Yan

Motivated by the concept of lattice-bornological vector spaces of J. Paseka, S. Solovyov and M. Stehlík, which extends bornological vector spaces to the fuzzy setting over a complete lattice, this paper continues to study the theory of L-bornological vector spaces. The specific description of L-bornological vector spaces is presented, some properties of Lowen functors between the category of bornological vector spaces and the category of L-bornological vector spaces are discussed. In addition, the notions and some properties of L-Mackey convergence and separation in L-bornological vector spaces are showed. The equivalent characterization of separation in L-bornological vector spaces in terms of L-Mackey convergence is obtained in particular.


2020 ◽  
Vol 32 (6) ◽  
pp. 1395-1406
Author(s):  
Joseph Chuang ◽  
Andrey Lazarev

AbstractWe show that the notions of homotopy epimorphism and homological epimorphism in the category of differential graded algebras are equivalent. As an application we obtain a characterization of acyclic maps of topological spaces in terms of induced maps of their chain algebras of based loop spaces. In the case of a universal acyclic map we obtain, for a wide class of spaces, an explicit algebraic description for these induced maps in terms of derived localization.


2004 ◽  
Vol 11 (4) ◽  
pp. 613-633
Author(s):  
V. Baladze ◽  
L. Turmanidze

Abstract Border homology and cohomology groups of pairs of uniform spaces are defined and studied. These groups give an intrinsic characterization of Čech type homology and cohomology groups of the remainder of a uniform space.


1978 ◽  
Vol 30 (1) ◽  
pp. 304-316 ◽  
Author(s):  
Rudolf-E. Hoffmann
Keyword(s):  

2001 ◽  
Vol 27 (8) ◽  
pp. 505-512 ◽  
Author(s):  
José Carlos Rodríguez Alcantud

We extend van Dalen and Wattel's (1973) characterization of orderable spaces and their subspaces by obtaining analogous results for two larger classes of topological spaces. This type of spaces are defined by considering preferences instead of linear orders in the former definitions, and possess topological properties similar to those of (totally) orderable spaces (cf. Alcantud, 1999). Our study provides particular consequences of relevance in mathematical economics; in particular, a condition equivalent to the existence of a continuous preference on a topological space is obtained.


2013 ◽  
Vol 21 (3) ◽  
pp. 223-233
Author(s):  
Eliza Niewiadomska ◽  
Adam Grabowski

Summary In the article the formal characterization of preference spaces [1] is given. As the preference relation is one of the very basic notions of mathematical economics [9], it prepares some ground for a more thorough formalization of consumer theory (although some work has already been done - see [17]). There was an attempt to formalize similar results in Mizar, but this work seems still unfinished [18]. There are many approaches to preferences in literature. We modelled them in a rather illustrative way (similar structures were considered in [8]): either the consumer (strictly) prefers an alternative, or they are of equal interest; he/she could also have no opinion of the choice. Then our structures are based on three relations on the (arbitrary, not necessarily finite) set of alternatives. The completeness property can however also be modelled, although we rather follow [2] which is more general [12]. Additionally we assume all three relations are disjoint and their set-theoretic union gives a whole universe of alternatives. We constructed some positive and negative examples of preference structures; the main aim of the article however is to give the characterization of consumer preference structures in terms of a binary relation, called characteristic relation [10], and to show the way the corresponding structure can be obtained only using this relation. Finally, we show the connection between tournament and total spaces and usual properties of the ordering relations.


Sign in / Sign up

Export Citation Format

Share Document