A Compactification due to Fell

1972 ◽  
Vol 15 (1) ◽  
pp. 145-146 ◽  
Author(s):  
Aubrey Wulfsohn

We give an alternative construction of a Hausdorff compactification due to Fell [2]. We say that a space is compact if it has the Heine-Borel property, locally compact if each point has a fundamental system of compact neighbourhoods. The interesting spaces from the point of view of this paper, are the non-Hausdorjf ones since for locally compact Hausdorff spaces Fell's compactification is the usual one-point compactification. The motivation for the compactification comes from the theory of continuous fields of C*-algebras: the primitive spectrum of a C*- algebra A is a locally compact T0 space X and Fell [3] realizes A as an algebra of fields of operators over the compactification of X. This note is based on a discussion of the author with Professor Fell.

1973 ◽  
Vol 16 (3) ◽  
pp. 435-437 ◽  
Author(s):  
C. Eberhart ◽  
J. B. Fugate ◽  
L. Mohler

It is well known (see [3](1)) that no continuum (i.e. compact, connected, Hausdorff space) can be written as a countable disjoint union of its (nonvoid) closed subsets. This result can be generalized in two ways into the setting of locally compact, connected, Hausdorff spaces. Using the one point compactification of a locally compact, connected, Hausdorff space X one can easily show that X cannot be written as a countable disjoint union of compact subsets. If one makes the further assumption that X is locally connected, then one can show that X cannot be written as a countable disjoint union of closed subsets.(2)


Author(s):  
Adel N. Boules

The first eight sections of this chapter constitute its core and are generally parallel to the leading sections of chapter 4. Most of the sections are brief and emphasize the nonmetric aspects of topology. Among the topics treated are normality, regularity, and second countability. The proof of Tychonoff’s theorem for finite products appears in section 8. The section on locally compact spaces is the transition between the core of the chapter and the more advanced sections on metrization, compactification, and the product of infinitely many spaces. The highlights include the one-point compactification, the Urysohn metrization theorem, and Tychonoff’s theorem. Little subsequent material is based on the last three sections. At various points in the book, it is explained how results stated for the metric case can be extended to topological spaces, especially locally compact Hausdorff spaces. Some such results are developed in the exercises.


2021 ◽  
pp. 1-11
Author(s):  
Tyrone Crisp

By computing the completely bounded norm of the flip map on the Haagerup tensor product [Formula: see text] associated to a pair of continuous mappings of locally compact Hausdorff spaces [Formula: see text], we establish a simple characterization of the Beck-Chevalley condition for base change of operator modules over commutative [Formula: see text]-algebras, and a descent theorem for continuous fields of Hilbert spaces.


2019 ◽  
Vol 170 (5) ◽  
pp. 558-577
Author(s):  
Guram Bezhanishvili ◽  
Nick Bezhanishvili ◽  
Joel Lucero-Bryan ◽  
Jan van Mill

1977 ◽  
Vol 18 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Bridget Bos Baird

All topological spaces here are assumed to be T2. The collection F(Y)of all homeomorphisms whose domains and ranges are closed subsets of a topological space Y is an inverse semigroup under the operation of composition. We are interested in the general problem of getting some information about the subsemigroups of F(Y) whenever Y is a compact metric space. Here, we specifically look at the problem of determining those spaces X with the property that F(X) is isomorphic to a subsemigroup of F(Y). The main result states that if X is any first countable space with an uncountable number of points, then the semigroup F(X) can be embedded into the semigroup F(Y) if and only if either X is compact and Y contains a copy of X, or X is noncompact and locally compact and Y contains a copy of the one-point compactification of X.


1971 ◽  
Vol 23 (3) ◽  
pp. 544-549
Author(s):  
G. E. Peterson

The purpose of this paper is to prove that o(l/x) is the best possible Tauberian condition for the collective continuous Hausdorff method of summation. The analogue of this result for the collective (discrete) Hausdorff method is known [1, pp. 229, ff.; 7, p. 318; 8, p. 254]. Our method involves generalizing a well-known Abelian theorem of Agnew [2] to locally compact spaces and then applying the analogue for integrals of a result Lorentz obtained for series [6, Theorem 1].Let T and X denote locally compact, non compact, σ-compact Hausdorff spaces. Let T′ = T ∪ (∞) and X′ = X ∪ (∞) denote the onepoint compactifications of T and X, respectively. Let B(T) denote the set of locally bounded, complex valued Borel functions on T and let B∞(T) denote the bounded functions in B(T).


1981 ◽  
Vol 34 (2) ◽  
pp. 349-355
Author(s):  
David John

The fact that simple links in locally compact connected metric spaces are nondegenerate was probably first established by C. Kuratowski and G. T. Whyburn in [2], where it is proved for Peano continua. J. L. Kelley in [3] established it for arbitrary metric continua, and A. D. Wallace extended the theorem to Hausdorff continua in [4]. In [1], B. Lehman proved this theorem for locally compact, locally connected Hausdorff spaces. We will show that the locally connected property is not necessary.A continuum is a compact connected Hausdorff space. For any two points a and b of a connected space M, E(a, b) denotes the set of all points of M which separate a from b in M. The interval ab of M is the set E(a, b) ∪ {a, b}.


2008 ◽  
Vol 15 (1) ◽  
pp. 53-61
Author(s):  
Majid Gazor

Abstract In this paper a theorem analogous to the Aleksandrov theorem is presented in terms of measure theory. Furthermore, we introduce the condensation rank of Hausdorff spaces and prove that any ordinal number is associated with the condensation rank of an appropriate locally compact totally imperfect space. This space is equipped with a probability Borel measure which is outer regular, vanishes at singletons, and is also inner regular in the sense of closed sets.


Sign in / Sign up

Export Citation Format

Share Document