The Generalized Rayleigh Quotient

1974 ◽  
Vol 17 (2) ◽  
pp. 251-256 ◽  
Author(s):  
M. V. Pattabhiraman

In this paper we generalize the concept of the Rayleigh quotient to a complex Banach space. Lord Rayleigh investigated the quotient(1)considered as a function of the components of q, in the case of a symmetric matrix pencil Aλ+C with A positive definite. It is known that R(q) has a stationary value when q is a characteristic vector of Aλ+C and that(2)where qi is a characteristic vector corresponding to the characteristic value λi

1954 ◽  
Vol 6 ◽  
pp. 416-419 ◽  
Author(s):  
H. M. Sternberg ◽  
R. L. Sternberg

The purpose of this note is to establish Theorem A below for the two-point homogeneous vector boundary problemwhere the Pi(x) are given real m × m symmetric matrix functions of x with P0(x) positive definite and Pi(x) of class C2−i on an infinite interval [a, ∞), and where by a solution of (1.1) — (1.2) for a ≤ x1 < x2 < ∞ we understand a real m-dimensional column vector u = u(x) of class C2 on [a, ∞) which is such that Pi(x)u(2−i) is of class C2−i on [a, ∞) and which satisfies (1.1) — (1.2) with the former a vector identity on [a, ∞).


1985 ◽  
Vol 97 (2) ◽  
pp. 321-324
Author(s):  
J. R. Partington

Let X be a complex Banach space and T a bounded operator on X. The numerical range of T is defined by


Author(s):  
J. Martinez Moreno

Let J be a complex Banach space and a complex Jordan algebra equipped with an algebra involution *. Then J is a Jordan C*-algebra if the following conditions are satisfied:(Ua is defined on page 3).


1997 ◽  
Vol 56 (2) ◽  
pp. 303-318 ◽  
Author(s):  
Maurice Hasson

Let T: B → B be a bounded linear operator on the complex Banach space B and let f(z) be analytic on a domain D containing the spectrum Sp(T) of T. Then f(T) is defined bywhere C is a contour surrounding SP(T) and contained in D.


2014 ◽  
Vol 57 (3) ◽  
pp. 665-680
Author(s):  
H. S. MUSTAFAYEV

AbstractLet A be an invertible operator on a complex Banach space X. For a given α ≥ 0, we define the class $\mathcal{D}$Aα(ℤ) (resp. $\mathcal{D}$Aα (ℤ+)) of all bounded linear operators T on X for which there exists a constant CT>0, such that $ \begin{equation*} \Vert A^{n}TA^{-n}\Vert \leq C_{T}\left( 1+\left\vert n\right\vert \right) ^{\alpha }, \end{equation*} $ for all n ∈ ℤ (resp. n∈ ℤ+). We present a complete description of the class $\mathcal{D}$Aα (ℤ) in the case when the spectrum of A is real or is a singleton. If T ∈ $\mathcal{D}$A(ℤ) (=$\mathcal{D}$A0(ℤ)), some estimates for the norm of AT-TA are obtained. Some results for the class $\mathcal{D}$Aα (ℤ+) are also given.


1978 ◽  
Vol 30 (5) ◽  
pp. 1045-1069 ◽  
Author(s):  
I. Gohberg ◽  
P. Lancaster ◽  
L. Rodman

Let be a complex Banach space and the algebra of bounded linear operators on . In this paper we study functions from the complex numbers to of the form


1968 ◽  
Vol 8 (1) ◽  
pp. 119-127 ◽  
Author(s):  
S. J. Bernau

Recall that the spectrum, σ(T), of a linear operator T in a complex Banach space is the set of complex numbers λ such that T—λI does not have a densely defined bounded inverse. It is known [7, § 5.1] that σ(T) is a closed subset of the complex plane C. If T is not bounded, σ(T) may be empty or the whole of C. If σ(T) ≠ C and T is closed the spectral mapping theorem, is valid for complex polynomials p(z) [7, §5.7]. Also, if T is closed and λ ∉ σ(T), (T–λI)−1 is everywhere defined.


1986 ◽  
Vol 28 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Vladimir Rakočević

Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear operators on X by B (X) (K(X)). Let σ(A) and σa(A) denote, respectively, the spectrum and approximate point spectrum of an element A of B(X). Setσem(A)and σeb(A) are respectively Schechter's and Browder's essential spectrum of A ([16], [9]). σea (A) is a non-empty compact subset of the set of complex numbers ℂ and it is called the essential approximate point spectrum of A ([13], [14]). In this note we characterize σab(A) and show that if f is a function analytic in a neighborhood of σ(A), then σab(f(A)) = f(σab(A)). The relation between σa(A) and σeb(A), that is exhibited in this paper, resembles the relation between the σ(A) and the σeb(A), and it is reasonable to call σab(A) Browder's essential approximate point spectrum of A.


1984 ◽  
Vol 96 (3) ◽  
pp. 483-493 ◽  
Author(s):  
Kirsti Mattila

Let X be a complex Banach space. We denote by X* the dual space of X and by B(X) the space of all bounded linear operators on X. The (spatial) numerical range of an operator TεB(X) is defined as the setIf V(T) ⊂ ℝ, then T is called hermitian. More about numerical ranges may be found in [8] and [9].


1981 ◽  
Vol 22 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Ridgley Lange

Let X be a complex Banach space and let T be a bounded linear operator on X. Then T is decomposable if for every finite open cover of σ(T) there are invariant subspaces Yi(i= 1, 2, …, n) such that(An invariant subspace Y is spectral maximal [for T] if it contains every invariant subspace Z for which σ(T|Z) ⊂ σ(T|Y).).


Sign in / Sign up

Export Citation Format

Share Document