Nonconvexity of the Generalized Numerical Range Associated with the Principal Character

2000 ◽  
Vol 43 (4) ◽  
pp. 448-458
Author(s):  
Chi-Kwong Li ◽  
Alexandru Zaharia

AbstractSuppose m and n are integers such that 1 ≤ m ≤ n. For a subgroup H of the symmetric group Sm of degree m, consider the generalized matrix function on m × m matrices B = (bij) defined by and the generalized numerical range of an n × n complex matrix A associated with dH defined byIt is known that WH(A) is convex if m = 1 or if m = n = 2. We show that there exist normal matrices A for which WH(A) is not convex if 3 ≤ m ≤ n. Moreover, for m = 2 < n, we prove that a normal matrix A with eigenvalues lying on a straight line has convex WH(A) if and only if νA is Hermitian for some nonzero ν ∈ ℂ. These results extend those of Hu, Hurley and Tam, who studied the special case when 2 ≤ m ≤ 3 ≤ n and H = Sm.

1974 ◽  
Vol 26 (02) ◽  
pp. 352-354 ◽  
Author(s):  
Jacques Dubois

The permanent of an n-square complex matrix P = (pij ) is defined by where the summation extends over Sn , the symmetric group of degree n. This matrix function has considerable significance in certain combinatorial problems [6; 7]. The properties and many related problems about the permanent are presented in [3] along with an extensive bibliography.


1983 ◽  
Vol 24 (2) ◽  
pp. 191-194 ◽  
Author(s):  
Yik-Hoi Au-Yeung ◽  
Kam-Chuen Ng

Let A be an n × n complex matrix and c = (c1… cn) єℂn. Define the c-numerical range of A to be the set is an orthonormal set in , where * denotes the conjugate transpose. Westwick [8[ proved that if c … cn are collinear, then Wc(A) is convex. (Poon [6] gave another proof.) But in general for n ≧3, Wc(A) may fail to be convex even for normal A (for example, see Marcus [4] or Lemma 3 in this note) though it is star-shaped (Tsing [7]). In the following, we shall assume that A is normal. Let W(A) = {diag UAU*: U is unitary}. Horn [3] proved that if the eigenvalues of A are collinear, then W(A) is convex. Au-Yeung and Sing [2] showed that the converse is also true. Marcus [4] further conjectured (and proved for n = 3) that if Wc(A) is convex for all cєℂn then the eigenvalues of A are collinear. Let λ = (λ1, …, λn єℂn. We denote by the vector λ1, …, λn and by [λ] the diagonal matrix with λ1, …, λn lying on its diagonal. Since, for any unitary matrix U,. Wc(A) = Wc (UAU*), the Marcus conjecture reduces to: if Wc([λ]) is convex for all c єℂn then λ1, … λn are collinear. For the case n = 3, Au-Yeung and Poon [1] gave a complete characterization on the convexity of the set Wc([λ]) in terms of the relative position of the points , where σ є S3 the permutation group of order 3. As an example they showed that if λ1, λ2, λ3 are not collinear, then is not convex (Lemma 3 in this note gives another proof). We shall show that for the case n = 4, is not convex if λ1, λ2. λ3. λ4 are not collinear. Thus for n = 3, 4 the Marcus conjecture is answered and improved.


1969 ◽  
Vol 21 ◽  
pp. 982-991 ◽  
Author(s):  
Paul J. Nikolai

Let A = [aij] denote an n-square matrix with entries in the field of complex numbers. Denote by H a subgroup of Sn, the symmetric group on the integers 1, …, n, and by a character of degree 1 on H. Thenis the generalized matrix function of A associated with H and x; e.g., if H = Sn and χ = 1, then the permanent function. If the sequences ω = (ω1, …, ωm) and ϒ = (ϒ1, …, ϒm) are m-selections, m ≦ w, of integers 1, …, n, then A [ω| ϒ] denotes the m-square generalized submatrix [aωiϒj], i, j = 1, …, m, of the n-square matrix A. If ω is an increasing m-combination, then A [ω|ω] is an m-square principal submatrix of A.


2010 ◽  
Vol 69 (3) ◽  
Author(s):  
W. F. Harris

For a dioptric system with elements which may be heterocentric and astigmatic an optical axis has been defined to be a straight line along which a ray both enters and emerges from the system.  Previous work shows that the dioptric system may or may not have an optical axis and that, if it does have one, then that optical axis may or may not be unique.  Formulae were derived for the locations of any optical axes.  The purpose of this paper is to extend those results to allow for reflecting surfaces in the system in addition to refracting elements.  Thus the paper locates any optical axes in catadioptric systems (including dioptric systems as a special case).  The reflecting surfaces may be astigmatic and decentred or tilted.  The theory is illustrated by means of numerical examples.  The locations of the optical axes are calculated for seven optical systems associated with a particular heterocentric astigmatic model eye.  The optical systems are the visual system, the four Purkinje systems and two other nonvisual systems of the eye.  The Purkinje systems each have an infinity of optical axes whereas the other nonvisual systems, and the visual system, each have a unique optical axis. (S Afr Optom 2010 69(3) 152-160)


2016 ◽  
Vol 506 ◽  
pp. 308-315 ◽  
Author(s):  
Pan-Shun Lau ◽  
Tuen-Wai Ng ◽  
Nam-Kiu Tsing

1983 ◽  
Vol 14 (3) ◽  
pp. 235-239 ◽  
Author(s):  
Yik-Hoi Au-Yeung ◽  
Nam-Kiu Tsing

2001 ◽  
Vol 08 (01) ◽  
pp. 19-27 ◽  
Author(s):  
R. F. Streater

We study coupled nonlinear parabolic equations for a fluid described by a material density ρ and a temperature Θ, both functions of space and time. In one dimension, we find some stationary solutions corresponding to fixing the temperature on the boundary, with no-escape boundary conditions for the material. For the special case, where the temperature on the boundary is the same at both ends, the linearized equations for small perturbations about a stationary solution at uniform temperature and density are derived; they are subject to boundary conditions, Dirichlet for Θ and no-flow conditions for the material. The spectrum of the generator L of time evolution, regarded as an operator on L2[0,1], is shown to be real, discrete and non-positive, even though L is not self-adjoint. This result is necessary for the stability of the stationary state, but might not be sufficient. The problem lies in the fact that L is not a sectorial operator, since its numerical range is ℂ.


1987 ◽  
Vol 29 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Mario Petrich ◽  
Stuart Rankin

Transitive group representations have their analogue for inverse semigroups as discovered by Schein [7]. The right cosets in the group case find their counterpart in the right ω-cosets and the symmetric inverse semigroup plays the role of the symmetric group. The general theory developed by Schein admits a special case discovered independently by Ponizovskiǐ [4] and Reilly [5]. For a discussion of this topic, see [1, §7.3] and [2, Chapter IV].


Sign in / Sign up

Export Citation Format

Share Document