scholarly journals Albert algebras over rings and related torsors

2020 ◽  
pp. 1-24
Author(s):  
Seidon Alsaody

Abstract We study exceptional Jordan algebras and related exceptional group schemes over commutative rings from a geometric point of view, using appropriate torsors to parametrize and explain classical and new constructions, and proving that over rings, they give rise to nonisomorphic structures. We begin by showing that isotopes of Albert algebras are obtained as twists by a certain $\mathrm F_4$ -torsor with total space a group of type $\mathrm E_6$ and, using this, that Albert algebras over rings in general admit nonisomorphic isotopes even in the split case, as opposed to the situation over fields. We then consider certain $\mathrm D_4$ -torsors constructed from reduced Albert algebras, and show how these give rise to a class of generalised reduced Albert algebras constructed from compositions of quadratic forms. Showing that this torsor is nontrivial, we conclude that the Albert algebra does not uniquely determine the underlying composition, even in the split case. In a similar vein, we show that a given reduced Albert algebra can admit two coordinate algebras which are nonisomorphic and have nonisometric quadratic forms, contrary, in a strong sense, to the case over fields, established by Albert and Jacobson.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ryuya Namba

AbstractModerate deviation principles (MDPs) for random walks on covering graphs with groups of polynomial volume growth are discussed in a geometric point of view. They deal with any intermediate spatial scalings between those of laws of large numbers and those of central limit theorems. The corresponding rate functions are given by quadratic forms determined by the Albanese metric associated with the given random walks. We apply MDPs to establish laws of the iterated logarithm on the covering graphs by characterizing the set of all limit points of the normalized random walks.


Author(s):  
Qiang Zhao ◽  
Hong Tao Wu

This paper describes two aspects of multibody system (MBS) dynamics on a generalized mass metric in Riemannian velocity space and recursive momentum formulation. Firstly, we present a detailed expression of the Riemannian metric and operator factorization of a generalized mass tensor for the dynamics of general-topology rigid MBS. The derived expression allows a clearly understanding the components of the generalized mass tensor, which also constitute a metric of the Riemannian velocity space. It is being the fact that there does exist a common metric in Lagrange and recursive Newton-Euler dynamic equation, we can determine, from the Riemannian geometric point of view, that there is the equivalent relationship between the two approaches to a given MBS. Next, from the generalized momentum definition in the derivation of the Riemannian velocity metrics, recursive momentum equations of MBS dynamics are developed for progressively more complex systems: serial chains, topological trees, and closed-loop systems. Through the principle of impulse and momentum, a new method is proposed for reorienting and locating the MBS form a given initial orientation and location to desired final ones without needing to solve the motion equations.


CISM journal ◽  
1988 ◽  
Vol 42 (4) ◽  
pp. 321-330 ◽  
Author(s):  
P.J.G. Teunissen ◽  
E.H. Knickmeyer

Since almost all functional relations in our geodetic models are nonlinear, it is important, especially from a statistical inference point of view, to know how nonlinearity manifests itself at the various stages of an adjustment. In this paper particular attention is given to the effect of nonlinearity on the first two moments of least squares estimators. Expressions for the moments of least squares estimators of parameters, residuals and functions derived from parameters, are given. The measures of nonlinearity are discussed both from a statistical and differential geometric point of view. Finally, our results are applied to the 2D symmetric Helmert transformation with a rotational invariant covariance structure.


2017 ◽  
Vol 7 (1) ◽  
pp. 100 ◽  
Author(s):  
María José Beltrán Meneu ◽  
Marina Murillo Arcila ◽  
Enrique Jordá Mora

In this work, we present a teaching proposal which emphasizes on visualization and physical applications in the study of eigenvectors and eigenvalues. These concepts are introduced using the notion of the moment of inertia of a rigid body and the GeoGebra software. The proposal was motivated after observing students’ difficulties when treating eigenvectors and eigenvalues from a geometric point of view. It was designed following a particular sequence of activities with the schema: exploration, introduction of concepts, structuring of knowledge and application, and considering the three worlds of mathematical thinking provided by Tall: embodied, symbolic and formal.


2019 ◽  
Vol 17 (06) ◽  
pp. 1950077 ◽  
Author(s):  
Sheng-Tong Zhou ◽  
Qian Xiao ◽  
Jian-Min Zhou ◽  
Hong-Guang Li

Rackwitz–Fiessler (RF) method is well accepted as an efficient way to solve the uncorrelated non-Normal reliability problems by transforming original non-Normal variables into equivalent Normal variables based on the equivalent Normal conditions. However, this traditional RF method is often abandoned when correlated reliability problems are involved, because the point-by-point implementation property of equivalent Normal conditions makes the RF method hard to clearly describe the correlations of transformed variables. To this end, some improvements on the traditional RF method are presented from the isoprobabilistic transformation and copula theory viewpoints. First of all, the forward transformation process of RF method from the original space to the standard Normal space is interpreted as the isoprobabilistic transformation from the geometric point of view. This viewpoint makes us reasonably describe the stochastic dependence of transformed variables same as that in Nataf transformation (NATAF). Thus, a corresponding enhanced RF (EnRF) method is proposed to deal with the correlated reliability problems described by Pearson linear correlation. Further, we uncover the implicit Gaussian copula hypothesis of RF method according to the invariant theorem of copula and the strictly increasing isoprobabilistic transformation. Meanwhile, based on the copula-only rank correlations such as the Spearman and Kendall correlations, two improved RF (IRF) methods are introduced to overcome the potential pitfalls of Pearson correlation in EnRF. Later, taking NATAF as a reference, the computational cost and efficiency of above three proposed RF methods are also discussed in Hasofer–Lind reliability algorithm. Finally, four illustrative structure reliability examples are demonstrated to validate the availability and advantages of the new proposed RF methods.


1989 ◽  
Vol 77 (394) ◽  
pp. 0-0 ◽  
Author(s):  
Frank DeMeyer ◽  
David Harrison ◽  
Rick Miranda

Sign in / Sign up

Export Citation Format

Share Document