operator factorization
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

Positivity ◽  
2013 ◽  
Vol 17 (4) ◽  
pp. 1115-1122 ◽  
Author(s):  
Adrian Sandovici ◽  
Zoltán Sebestyén

2012 ◽  
Vol 11 (2) ◽  
pp. 303-318 ◽  
Author(s):  
J. Coatléven ◽  
P. Joly

AbstractThis work concerns multiple-scattering problems for time-harmonic equations in a reference generic media. We consider scatterers that can be sources, obstacles or compact perturbations of the reference media. Our aim is to restrict the computational domain to small compact domains containing the scatterers. We use Robin-to-Robin (RtR) operators (in the most general case) to express boundary conditions for the interior problem. We show that one can always factorize the RtR map using only operators defined using single-scatterer problems. This factorization is based on a decomposition of the diffracted field, on the whole domain where it is defined. Assuming that there exists a good method for solving single-scatterer problems, it then gives a convenient way to compute RtR maps for a random number of scatterers.


2009 ◽  
Vol 27 ◽  
pp. 272-288 ◽  
Author(s):  
Martin J. Gander ◽  
Laurence Halpern ◽  
Caroline Japhet ◽  
Veronique Martin

Author(s):  
Qiang Zhao ◽  
Hong Tao Wu

This paper describes two aspects of multibody system (MBS) dynamics on a generalized mass metric in Riemannian velocity space and recursive momentum formulation. Firstly, we present a detailed expression of the Riemannian metric and operator factorization of a generalized mass tensor for the dynamics of general-topology rigid MBS. The derived expression allows a clearly understanding the components of the generalized mass tensor, which also constitute a metric of the Riemannian velocity space. It is being the fact that there does exist a common metric in Lagrange and recursive Newton-Euler dynamic equation, we can determine, from the Riemannian geometric point of view, that there is the equivalent relationship between the two approaches to a given MBS. Next, from the generalized momentum definition in the derivation of the Riemannian velocity metrics, recursive momentum equations of MBS dynamics are developed for progressively more complex systems: serial chains, topological trees, and closed-loop systems. Through the principle of impulse and momentum, a new method is proposed for reorienting and locating the MBS form a given initial orientation and location to desired final ones without needing to solve the motion equations.


Sign in / Sign up

Export Citation Format

Share Document