Analytic Sets, Baire Sets and the Standard Part Map

1979 ◽  
Vol 31 (3) ◽  
pp. 663-672 ◽  
Author(s):  
C. Ward Henson

The problems considered here arose in connection with the interesting use by Loeb [8] and Anderson [1], [2] of Loeb's measure construction [7] to define measures on certain topological spaces. The original problem, from which the results given here developed, was to identify precisely the family of sets on which these measures are defined.To be precise, let be a set theoretical structure and * a nonstandard extension of , as in the usual framework for nonstandard analysis (see [10]). Let X be a Hausdorff space in and stx the standard part map for X, defined on the set of nearstandard points in *X. Suppose, for example, µ is an internal, finitely additive probability measure defined on the internal subsets of *X.

Author(s):  
M Pourmahdian ◽  
R Zoghifard

Abstract This paper provides some model-theoretic analysis for probability (modal) logic ($PL$). It is known that this logic does not enjoy the compactness property. However, by passing into the sublogic of $PL$, namely basic probability logic ($BPL$), it is shown that this logic satisfies the compactness property. Furthermore, by drawing some special attention to some essential model-theoretic properties of $PL$, a version of Lindström characterization theorem is investigated. In fact, it is verified that probability logic has the maximal expressive power among those abstract logics extending $PL$ and satisfying both the filtration and disjoint unions properties. Finally, by alternating the semantics to the finitely additive probability models ($\mathcal{F}\mathcal{P}\mathcal{M}$) and introducing positive sublogic of $PL$ including $BPL$, it is proved that this sublogic possesses the compactness property with respect to $\mathcal{F}\mathcal{P}\mathcal{M}$.


2020 ◽  
Vol 28 (1) ◽  
Author(s):  
H. M. Abu-Donia ◽  
Rodyna A. Hosny

Abstract Weak structure space (briefly, wss) has master looks, when the whole space is not open, and these classes of subsets are not closed under arbitrary unions and finite intersections, which classify it from typical topology. Our main target of this article is to introduce $$\psi _{{\mathcal {H}}}(.)$$ ψ H ( . ) -operator in hereditary class weak structure space (briefly, $${\mathcal {H}}wss$$ H w s s ) $$(X, w, {\mathcal {H}})$$ ( X , w , H ) and examine a number of its characteristics. Additionally, we clarify some relations that are credible in topological spaces but cannot be realized in generalized ones. As a generalization of w-open sets and w-semiopen sets, certain new kind of sets in a weak structure space via $$\psi _{{\mathcal {H}}}(.)$$ ψ H ( . ) -operator called $$\psi _{{\mathcal {H}}}$$ ψ H -semiopen sets are introduced. We prove that the family of $$\psi _{{\mathcal {H}}}$$ ψ H -semiopen sets composes a supra-topology on X. In view of hereditary class $${\mathcal {H}}_{0}$$ H 0 , $$w T_{1}$$ w T 1 -axiom is formulated and also some of their features are investigated.


2014 ◽  
Vol 7 (3) ◽  
pp. 439-454 ◽  
Author(s):  
PHILIP KREMER

AbstractIn the topological semantics for propositional modal logic, S4 is known to be complete for the class of all topological spaces, for the rational line, for Cantor space, and for the real line. In the topological semantics for quantified modal logic, QS4 is known to be complete for the class of all topological spaces, and for the family of subspaces of the irrational line. The main result of the current paper is that QS4 is complete, indeed strongly complete, for the rational line.


Author(s):  
Hind Fadhil Abbas

The fusion of technology and science is a very complex and scientific phenomenon that still carries mysteries that need to be understood. To unravel these phenomena, mathematical models are beneficial to treat different systems with unpredictable system elements. Here, the generalized intuitionistic fuzzy ideal is studied with topological space. These concepts are useful to analyze new generalized intuitionistic models. The basic structure is studied here with various relations between the generalized intuitionistic fuzzy ideals and the generalized intuitionistic fuzzy topologies. This study includes intuitionistic fuzzy topological spaces (IFS); the fundamental definitions of intuitionistic fuzzy Hausdorff space; intuitionistic fuzzy regular space; intuitionistic fuzzy normal space; intuitionistic fuzzy continuity; operations on IFS, the compactness and separation axioms.


2021 ◽  
Vol 7 ◽  
pp. 20-36
Author(s):  
Raja Mohammad Latif

In 2016 A. Devika and A. Thilagavathi introduced a new class of sets called M*-open sets and investigated some properties of these sets in topological spaces. In this paper, we introduce and study a new class of spaces, namely M*-irresolute topological vector spaces via M*-open sets. We explore and investigate several properties and characterizations of this new notion of M*-irresolute topological vector space. We give several characterizations of M*-Hausdorff space. Moreover, we show that the extreme point of the convex subset of M*-irresolute topological vector space X lies on the boundary.


1970 ◽  
Vol 22 (2) ◽  
pp. 227-234
Author(s):  
D. W. Bressler ◽  
A. H. Cayford

The set operations under consideration are Borel operations and Souslin's operation (). With respect to a given family of sets and in a setting free of any topological structure there are defined three Borel families (Definitions 3.1) and the family of Souslin sets (Definition 4.1). Conditions on an initial family are determined under which iteration of the Borel operations with Souslin's operation () on the initial family and the families successively produced results in a non-decreasing sequence of families of analytic sets (Theorem 5.2.1 and Definition 3.5). A classification of families of analytic sets with respect to an initial family of sets is indicated in a manner analogous to the familiar classification of Borel sets (Definition 5.3).


1975 ◽  
Vol 13 (2) ◽  
pp. 241-254 ◽  
Author(s):  
E. Tarafdar

Let (E, τ) be a locally convex linear Hausdorff topological space. We have proved mainly the following results.(i) Let f be nonexpansive on a nonempty τ-sequentially complete, τ-bounded, and starshaped subset M of E and let (I-f) map τ-bounded and τ-sequentially closed subsets of M into τ-sequentially closed subsets of M. Then f has a fixed-point in M.(ii) Let f be nonexpansive on a nonempty, τ-sequentially compact, and starshaped subset M of E. Then f has a fixed-point in M.(iii) Let (E, τ) be τ-quasi-complete. Let X be a nonempty, τ-bounded, τ-closed, and convex subset of E and M be a τ-compact subset of X. Let F be a commutative family of nonexpansive mappings on X having the property that for some f1 ∈ F and for each x ∈ X, τ-closure of the setcontains a point of M. Then the family F has a common fixed-point in M.


1989 ◽  
Vol 31 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Marek Nawrocki

Let X be a completely regular Hausdorff space. A Nachbin family of weights is a set V of upper-semicontinuous positive functions on X such that if u, υ ∈ V then there exists w ∈ V and t > 0 so that u, υ ≤ tw. For any Hausdorff topological vector space E, the weighted space CV0(X, E) is the space of all E-valued continuous functions f on X such that υf vanishes at infinity for all υ ∈ V. CV0(X, E) is equipped with the weighted topologywv = wv(X, E) which has as a base of neighbourhoods of zero the family of all sets of the formwhere υ ∈ Vand W is a neighbourhood of zero in E. If E is the scalar field, then the space CV0(X, E) is denoted by CV0(X). The reader is referred to [4, 6, 8] for information on weighted spaces.


Sign in / Sign up

Export Citation Format

Share Document