scholarly journals Gosavisiphon gen. nov. based on Halimeda paucimedullaris SCHLAGINTWEIT&EBLI,1998:a remarkable macroalga(Udoteaceae?)from the Late Cretaceous of the Northern Calcareous Alps(Austria and Germany) with affinites to Late Paleozoic and Late Triassic phylloids

2010 ◽  
Vol 63 (1) ◽  
Author(s):  
Felix Schlagintweit
2009 ◽  
Vol 83 (5) ◽  
pp. 783-793 ◽  
Author(s):  
B. Senowbari-Daryan ◽  
G. D. Stanley

Stromatomorpha californica Smith is a massive, calcified, tropical to subtropical organism of the Late Triassic that produced small biostromes and contributed in building some reefs. It comes from the displaced terranes of Cordilleran North America (Eastern Klamath terrane, Alexander terrane, and Wrangellia). This shallow-water organism formed small laminar masses and sometimes patch reefs. It was first referred to the order Spongiomorphidae but was considered to be a coral. Other affinities that have been proposed include hydrozoan, stomatoporoid, sclerosponge, and chambered sponge. Part of the problem was diagenesis that resulted in dissolution of the siliceous spicules and/or replaced them with calcite. Well-preserved dendroclone spicules found during study of newly discovered specimens necessitate an assignment of Stromatomorpha californica to the demosponge order Orchocladina Rauff. Restudy of examples from the Northern Calcareous Alps extends the distribution of this species to the Tethys, where it was an important secondary framework builder in Upper Triassic (Norian-Rhaetian) reef complexes. Revisions of Stromatomorpha californica produce much wider pantropical distribution, mirroring paleogeographic patterns revealed for other tropical Triassic taxa. Review of Liassic material from the Jurassic of Morocco, previously assigned to Stromatomorpha californica Smith var. columnaris Le Maitre, cannot be sustained. Species previously included in Stromatomorpha are: S. stylifera Frech (type species, Rhaetian), S. actinostromoides Boiko (Norian), S. californica Smith (Norian), S. concescui Balters (Ladinian-Carnian), S. pamirica Boiko (Norian), S. rhaetica Kühn (Rhaetian), S. stromatoporoides Frech, and S. tenuiramosa Boiko (Norian). Stromatomorpha rhaetica Kühn described from the Rhaetian of Vorarlberg, Austria shows no major difference from S. californica. An example described as S. oncescui Balters from the Ladinian-Carnian of the Rarau Mountains, Romania, is very similar to S. californica in exhibiting similar spicule types. However, because of the greater distance between individual pillars, horizontal layers, and the older age, S. oncescui is retained as a separate species. The net-like and regular skeleton of Spongiomorpha sanpozanensis Yabe and Sugiyama, from the Upper Triassic of Sambosan (Tosa, Japan), suggests a closer alliance with Stromatomorpha, and this taxon possibly could be the same as S. californica.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Sofia Laskari ◽  
Konstantinos Soukis ◽  
Stylianos Lozios ◽  
Daniel F. Stockli ◽  
Eirini M. Poulaki ◽  
...  

Detailed mapping and structural observations on the Cycladic Blueschist Unit (CBU) on Iraklia Island integrated with detrital zircon (DZ) U-Pb ages elucidate the Mesozoic pre-subduction and the Cenozoic orogenic evolution. Iraklia tectonostratigraphy includes a heterogeneous Lower Schist Fm., juxtaposed against a Marble Fm. and an overlying Upper Schist Fm. The contact is an extensional ductile-to-brittle-ductile, top-to-N shear zone, kinematically associated with the Oligo-Miocene exhumation. The DZ spectra of the Lower Schist have Gondwanan/peri-Gondwanan provenance signatures and point to Late Triassic Maximum Depositional Ages (MDAs). A quartz-rich schist lens yielded Precambrian DZ ages exclusively and is interpreted as part of the pre-Variscan metasedimentary Cycladic Basement, equivalent to schists of the Ios Island core. The Upper Schist represents a distinctly different stratigraphic package with late Cretaceous MDAs and dominance of Late Paleozoic DZ ages, suggestive of a more internal Pelagonian source. The contrast in the DZ U-Pb record between Lower and Upper Schist likely reflects the difference between a Paleotethyan and Neotethyan geodynamic imprint. The Triassic DZ input from eroded volcanic material is related to the final Paleotethys closure and Pindos/CBU rift basin opening, while late Cretaceous metamorphic/magmatic zircons and ~48–56 Ma zircon rims constrain the onset of Neotethyan convergence and high-pressure subduction metamorphism.


2020 ◽  
Vol 193 ◽  
pp. 103254
Author(s):  
Isaline Demangel ◽  
Zsófia Kovács ◽  
Sylvain Richoz ◽  
Silvia Gardin ◽  
Leopold Krystyn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document