Targeting cancer's Achilles’ heel: role of BCL-2 inhibitors in cellular senescence and apoptosis

2019 ◽  
Vol 11 (17) ◽  
pp. 2287-2312 ◽  
Author(s):  
Aarti Anantram ◽  
Mariam Degani

Members of the antiapoptotic BCL-2 proteins are involved in tumor growth, progression and survival, and are also responsible for chemoresistance to conventional anticancer agents. Early efforts to target these proteins yielded some active compounds; however, newer methodologies involving structure-based drug design, Nuclear Magnetic Resonance (NMR)-based screening and fragment-based screening yielded more potent compounds. Discovery of specific as well as nonspecific inhibitors of this class of proteins has resulted in great advances in targeted chemotherapy and decrease in chemoresistance. Here, we review the history and current progress in direct as well as selective targeting of the BCL-2 proteins for anticancer therapy.

1990 ◽  
Vol 259 (3) ◽  
pp. H843-H848 ◽  
Author(s):  
H. E. Cingolani ◽  
Y. Koretsune ◽  
E. Marban

During acute respiratory acidosis, cardiac contractile pressure first drops but then recovers substantially. We investigated the mechanism of this response in isovolumic perfused ferret hearts. Developed pressure (DP) and its first derivative (dP/dt) were measured before, during, and after hypercapnia induced by equilibrating the perfusate with 15% CO2, rather than the 5% CO2 used in control. Intramyocardial pH (pHi) was measured by phosphorus nuclear magnetic resonance (NMR) spectroscopy. After the onset of hypercapnia (1-2 min), DP and +dP/dt reached minimal mean values of 37 +/- 2 and 39 +/- 3% of control, respectively. This early decline in myocardial contactility was followed by a partial recovery such that DP and +dP/dt had returned to 66 +/- 6 and 62 +/- 4% of control, respectively, by 14 min of hypercapnia. pHi fell from 7.17 +/- 0.01 in control to 6.88 +/- 0.11 after approximately 2 min of hypercapnia. Thereafter, pHi recovered linearly with a mean slope of 0.011 +/- 0.003 pH U/min. Ethylisopropylamiloride (10(-6) M), a blocker of Na(+)-H+ exchange, prevented the recovery of pHi during hypercapnia and attenuated the recovery of contractility by 40%. We conclude that the recovery of contractility during respiratory acidosis at least partially reflects an underlying recovery of pHi mediated by Na(+)-H+ exchange.


1986 ◽  
Vol 64 (2) ◽  
pp. 404-412 ◽  
Author(s):  
S. Fliszár ◽  
G. Cardinal ◽  
N. A. Baykara

Benzenoid hydrocarbons were examined using a bond energy scheme featuring the role of atomic charges. The latter were conveniently deduced from appropriate correlations between theoretical results and 13C nuclear magnetic resonance shifts. Atomization energies calculated in this manner agree with their experimental counterparts to within 0.36 kcal mol-1 (average deviation). It appears that benzenoid hydrocarbons can be efficiently described in terms of local charge density properties. In the absence of any distinctive specific feature characterizing benzenoids, this particular description of chemical bonds ultimately results in a unifying genealogy smoothly relating to one another the various possible types of CC and CH bonds which are formed by sp2 and sp3 carbons.


Sign in / Sign up

Export Citation Format

Share Document