A Fast 3D Ear Recognition Method Based on Local Surface Patch

Author(s):  
Kai Wang ◽  
Zhichun Mu ◽  
Zhijun He
Perception ◽  
1982 ◽  
Vol 11 (4) ◽  
pp. 387-407 ◽  
Author(s):  
John Mayhew

Two methods for interpreting disparity information are described. Neither requires extraretinal information to scale for distance: one method uses horizontal disparities to solve for the viewing distance, the other uses the vertical disparities. Method 1 requires the assumption that the disparities derive from a locally planar surface. Then from the horizontal disparities measured at four retinal locations the viewing distance and the equation of local surface ‘patch’ can be obtained. Method 2 does not need this assumption. The vertical disparities are first used to obtain the values of the gaze and viewing distance. These are then used to interpret the horizontal disparity information. An algorithm implementing the methods has been tested and is found to be subject to a perceptual phenomenon known as the ‘induced effect’.


Author(s):  
Zhao Hailong ◽  
Yi Junyan

In recent years, automatic ear recognition has become a popular research. Effective feature extraction is one of the most important steps in Content-based ear image retrieval applications. In this paper, the authors proposed a new vectors construction method for ear retrieval based on Block Discriminative Common Vector. According to this method, the ear image is divided into 16 blocks firstly and the features are extracted by applying DCV to the sub-images. Furthermore, Support Vector Machine is used as classifier to make decision. The experimental results show that the proposed method performs better than classical PCA+LDA, so it is an effective human ear recognition method.


2018 ◽  
pp. 774-783
Author(s):  
Zhao Hailong ◽  
Yi Junyan

In recent years, automatic ear recognition has become a popular research. Effective feature extraction is one of the most important steps in Content-based ear image retrieval applications. In this paper, the authors proposed a new vectors construction method for ear retrieval based on Block Discriminative Common Vector. According to this method, the ear image is divided into 16 blocks firstly and the features are extracted by applying DCV to the sub-images. Furthermore, Support Vector Machine is used as classifier to make decision. The experimental results show that the proposed method performs better than classical PCA+LDA, so it is an effective human ear recognition method.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Qinping Zhu ◽  
Zhichun Mu

The ear’s relatively stable structure makes it suitable for recognition. In common identification applications, only one sample per person (OSPP) is registered in a gallery; consequently, effectively training deep-learning-based ear recognition approach is difficult. The state-of-the-art (SOA) 3D ear recognition using the OSPP approach bottlenecks when large occluding objects are close to the ear. Hence, we propose a system that combines PointNet++ and three layers of features that are capable of extracting rich identification information from a 3D ear. Our goal is to correctly recognize a 3D ear affected by a large nearby occlusion using one sample per person (OSPP) registered in a gallery. The system comprises four primary components: (1) segmentation; (2) local and local joint structural (LJS) feature extraction; (3) holistic feature extraction; and (4) fusion. We use PointNet++ for ear segmentation. For local and LJS feature extraction, we propose an LJS feature descriptor–pairwise surface patch cropped using a symmetrical hemisphere cut-structured histogram with an indexed shape (PSPHIS) descriptor. Furthermore, we propose a local and LJS matching engine based on the proposed LJS feature descriptor and SOA surface patch histogram indexed shape (SPHIS) local feature descriptor. For holistic feature extraction, we use a voxelization method for global matching. For the fusion component, we use a weighted fusion method to recognize the 3D ear. The experimental results demonstrate that the proposed system outperforms the SOA normalization-free 3D ear recognition methods using OSPP when the ear surface is influenced by a large nearby occlusion.


2013 ◽  
Vol 10 (4) ◽  
pp. 647-666 ◽  
Author(s):  
Sergio Orts-Escolano ◽  
Vicente Morell ◽  
Jose Garcia-Rodriguez ◽  
Miguel Cazorla ◽  
Robert B. Fisher

Sign in / Sign up

Export Citation Format

Share Document