scholarly journals Characteristic Capillary Diameter to Evaluate Capillary Pressure of Ordered Particle Structures Based on Simulation of Two-Phase Flow

2020 ◽  
Vol 57 (8) ◽  
pp. 417-423
Author(s):  
Tomoyo Yamamoto ◽  
Yasushi Mino ◽  
Koichi Nakaso ◽  
Kuniaki Gotoh
Author(s):  
Jennifer Niessner ◽  
S. Majid Hassanizadeh ◽  
Dustin Crandall

We present a new numerical model for macro-scale two-phase flow in porous media which is based on a physically consistent theory of multi-phase flow. The standard approach for modeling the flow of two fluid phases in a porous medium consists of a continuity equation for each phase, an extended form of Darcy’s law as well as constitutive relationships for relative permeability and capillary pressure. This approach is known to have a number of important shortcomings and, in particular, it does not account for the presence and role of fluid–fluid interfaces. An alternative is to use an extended model which is founded on thermodynamic principles and is physically consistent. In addition to the standard equations, the model uses a balance equation for specific interfacial area. The constitutive relationship for capillary pressure involves not only saturation, but also specific interfacial area. We show how parameters can be obtained for the alternative model using experimental data from a new kind of flow cell and present results of a numerical modeling study.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaoji Shang ◽  
J. G. Wang ◽  
Zhizhen Zhang

The governing equations of a two-phase flow have a strong nonlinear term due to the interactions between gas and water such as capillary pressure, water saturation, and gas solubility. This nonlinearity is usually ignored or approximated in order to obtain analytical solutions. The impact of such ignorance on the accuracy of solutions has not been clear so far. This study seeks analytical solutions without ignoring this nonlinear term. Firstly, a nonlinear mathematical model is developed for the two-phase flow of gas and water during shale gas production. This model also considers the effects of gas solubility in water. Then, iterative analytical solutions for pore pressures and production rates of gas and water are derived by the combination of travelling wave and variational iteration methods. Thirdly, the convergence and accuracy of the solutions are checked through history matching of two sets of gas production data: a China shale gas reservoir and a horizontal Barnett shale well. Finally, the effects of the nonlinear term, shale gas solubility, and entry capillary pressure on the shale gas production rate are investigated. It is found that these iterative analytical solutions can be convergent within 2-3 iterations. The solutions can well describe the production rates of both gas and water. The nonlinear term can significantly affect the forecast of shale gas production in both the short term and the long term. Entry capillary pressure and shale gas solubility in water can also affect shale gas production rates of shale gas and water. These analytical solutions can be used for the fast calculation of the production rates of both shale gas and water in the two-phase flow stage.


2011 ◽  
Vol 308-310 ◽  
pp. 553-558
Author(s):  
Chun Hui Fang ◽  
Xiao Yue Zhang

For seepage in unsaturated soil, there are both air flow and water flow, which can be called the water-air two-phase flow. In order to simulate the water-air two-phase flow in soil when there is groundwater, a numerical model of water-air two-phase flow in saturated-unsaturated soil is established in this paper. By the model, the air-flow and water-flow in unsaturated soil are both considered in seepage calculation. And the mass transfer between air-phase and water-phase, change of phase states are considered in calculation. Capillary pressure is the most important factor for the water-air two-phase flow in unsaturated soil, and the calculation method of capillary pressure is also given in the paper. At last examples are given to verify the correctness of the numerical model and the calculation method.


Sign in / Sign up

Export Citation Format

Share Document