Influence of Sewage Sludge and Leachate on Biochemical Methane Potential of Waste Biomass

Author(s):  
Kanchan Wakadikar
2017 ◽  
Vol 64 ◽  
pp. 140-148 ◽  
Author(s):  
César Huiliñir ◽  
Paula Pinto-Villegas ◽  
Alejandra Castillo ◽  
Silvio Montalvo ◽  
Lorna Guerrero

Author(s):  
Zuhaib Siddiqui ◽  
N.J. Horan ◽  
Kofi Anaman

Biomethane production from processed industrial food waste (IFW) in admixture with sewage sludge (primary and waste activated sludge: PS and WAS) was evaluated at a range of C:N ratios using a standard biochemical methane potential (BMP) test. IFW alone had a C:N of 30 whereas for WAS it was 5.4 and thus the C:N ratio of the blends fell in that range. Increasing the IFW content in mix improves the methane potential by increasing both the cumulative biogas production and the rate of methane production. Optimum methane yield 239 mL/g VSremoved occurred at a C:N ratio of 15 which was achieved with a blend containing 11 percent (w/w) IFW. As the fraction of IFW in the blend increased, volatile solids (VS) destruction was increased and this led to a reduction in methane yield and amount of production. The highest destruction of volatile solids of 93 percent was achieved at C:N of 20 followed by C:N 30 and 15. A shortened BMP test is adequate for evaluating optimum admixtures.


2013 ◽  
Vol 68 (7) ◽  
pp. 1622-1632 ◽  
Author(s):  
Elena Marañón ◽  
Luis Negral ◽  
Yolanda Fernández-Nava ◽  
Leonor Castrillón

Biochemical methane potential (BMP) tests have been carried out on sewage sludge from two wastewater treatment plants to assess the effect of additives (FeCl3 and two cationic polyelectrolytes) used in sludge dewatering. BMP tests were also carried out on the concentrated solid phase from the enzymic hydrolysis pre-treatment (42 °C, 48 h). FeCl3 had no significant effect on specific methane production, obtaining 242–246 LCH4/kgVSo. The effect of the combination of polyelectrolyte and FeCl3 depended on the polyelectrolyte and the sludge, but generally led to an increase in specific methane production (25–40%). When enzymic hydrolysis was applied as a pre-treatment, specific methane production increased from 6.8% in the sludge containing FeCl3 to 20% in the sludge without FeCl3, although the increases were not statistically significant. In terms of LCH4/kgVSrem, a general improvement was achieved both by means of additives and by enzymic hydrolysis. However, this improvement was only significant in the case of sludge which had undergone previous enzymic hydrolysis (62%) and in the untreated sludge containing a polyelectrolyte and FeCl3 (24%). Cationic polyelectrolytes inhibited solid–liquid separation during enzymic hydrolysis and, although the presence of only FeCl3 did not affect this separation, a significant decrease (32%) in LCH4/kgVSrem was observed.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4217
Author(s):  
German Smetana ◽  
Ewa Neczaj ◽  
Anna Grosser

Sewage sludge (SS) generation and its management still pose a problem in many countries. Anaerobic co-digestion (AcD) of SS with grease trap sludge (GTS) and organic fraction of municipal sewage waste (OFMSW), which are two easily biodegradable substrates, may improve biogas production and AcD kinetics. Algae biomass (AB) of the species Undaria pinnatifida can be the third co-digestion component that may also affect the AcD performance. The aim of the study was therefore to evaluate the performance of mesophilic and thermophilic SS batch AcD with OFMSW, GTS as well as AB through biochemical methane potential (BMP) assay in relation to cumulative specific biogas (YB) and methane yields (Ym). Three kinetic models were applied within the scope of the kinetic study. Results of the study showed that the mixture containing SS, GTS and AB brought the most noticeable improvements in Ym compared to other studied mixtures and in respect to standalone SS digestion, the improvement amounted to 88.37% at mesophilic temperature (260.83 ± 15.02 N mL CH4/g-VSadd and for standalone SS 138.47 ± 4.70 N mL CH4/g-VSadd) and 71.09%, respectively, at the thermophilic one (275.66 ± 4.11 N mL-CH4/g-VSadd and for SS standalone 161.13 ± 13.11 N mL-CH4/g-VSadd).


2011 ◽  
Vol 44 (5) ◽  
pp. 903-915 ◽  
Author(s):  
Kook-Sik Shin ◽  
Chang-Hyun Kim ◽  
Sang-Eun Lee ◽  
Young-Man Yoon

Sign in / Sign up

Export Citation Format

Share Document