scholarly journals A Numeric?Analytic Method for Fractional Order Nonlinear PDE?s With Modified Riemann-Liouville Derivative by Means of Fractional Variational Iteration Method

2015 ◽  
Vol 01 (04) ◽  
Author(s):  
Mehmet Merdan
2020 ◽  
Vol 20 (3) ◽  
pp. 661-672
Author(s):  
JAWARIA TARIQ ◽  
JAMSHAD AHMAD

In this work, a new emerging analytical techniques variational iteration method combine with Aboodh transform has been applied to find out the significant important analytical and convergent solution of some mathematical models of fractional order. These mathematical models are of great interest in engineering and physics. The derivative is in Caputo’s sense. These analytical solutions are continuous that can be used to understand the physical phenomena without taking interpolation concept. The obtained solutions indicate the validity and great potential of Aboodh transform with the variational iteration method and show that the proposed method is a good scheme. Graphically, the movements of some solutions are presented at different values of fractional order.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
H. Jafari ◽  
Abdelouahab Kadem ◽  
D. Baleanu

This paper presents approximate analytical solutions for the fractional-order Brusselator system using the variational iteration method. The fractional derivatives are described in the Caputo sense. This method is based on the incorporation of the correction functional for the equation. Two examples are solved as illustrations, using symbolic computation. The numerical results show that the introduced approach is a promising tool for solving system of linear and nonlinear fractional differential equations.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 328-336 ◽  
Author(s):  
Bo Tang ◽  
Yingzhe Fan ◽  
Jianping Zhao ◽  
Xuemin Wang

AbstractIn this paper, based on Jumarie’s modified Riemann-Liouville derivative, we apply the fractional variational iteration method using He’s polynomials to obtain solitary and compacton solutions of fractional KdV-like equations. The results show that the proposed method provides a very effective and reliable tool for solving fractional KdV-like equations, and the method can also be extended to many other fractional partial differential equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Fukang Yin ◽  
Junqiang Song ◽  
Xiaoqun Cao

A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional order. The fractional derivative is considered in Jumarie’s sense. The results are more accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient and simple.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

We are concerned here with singular partial differential equations of fractional order (FSPDEs). The variational iteration method (VIM) is applied to obtain approximate solutions of this type of equations. Convergence analysis of the VIM is discussed. This analysis is used to estimate the maximum absolute truncated error of the series solution. A comparison between the results of VIM solutions and exact solution is given. The fractional derivatives are described in Caputo sense.


Sign in / Sign up

Export Citation Format

Share Document