Numerical Study of Single Flow Element in a Nuclear Thermal Thrust Chamber

2015 ◽  
Vol 04 (03) ◽  
Author(s):  
Cheng GC ◽  
Ito Y Yen-Sen
Author(s):  
Gary Cheng ◽  
Yasushi Ito ◽  
Doug Ross ◽  
Yen-Sen Chen ◽  
Ten-See Wang

1996 ◽  
Vol 118 (2) ◽  
pp. 301-306 ◽  
Author(s):  
G. Ebenhoch ◽  
T. M. Speer

The design of cooling systems for gas turbine engine blades and vanes calls for efficient simulation programs. The main purpose of the described program is to determine the complete boundary condition at the coolant side to support a temperature calculation for the solid. For the simulation of convection and heat pick up of the coolant flow, pressure loss, and further effects to be found in a rotating frame, the cooling systems are represented by networks of nodes and flow elements. Within each flow element the fluid flow is modeled by a system of ordinary differential equations based on the one-dimensional conservation of mass, momentum, and energy. In this respect, the computer program differs from many other network computation programs. Concerning cooling configurations in rotating systems, the solution for a single flow element or the entire flow system is not guaranteed to be unique. This is due to rotational forces in combination with heat transfer and causes considerable computational difficulties, which can be overcome by a special path following method in which the angular velocity is selected as the parameter of homotopy. Results of the program are compared with measurements for three applications.


2017 ◽  
Vol 13 (3) ◽  
pp. 442-447
Author(s):  
Tomoyuki Yoshino ◽  
Tadashi Mori ◽  
Hiromichi Kawano ◽  
Kensaku Miyazaki ◽  
Yuki Yatabe ◽  
...  

2012 ◽  
Vol 516-517 ◽  
pp. 107-110
Author(s):  
Tao Nie ◽  
Wei Qiang Liu

By the use of the map of the thermal resistance among volume cells, we establish a coupled heat transfer model of the hot gas, chamber wall and coolant. A reduced one-dimensional model was employed for the coolant flow and heat transfer, and three dimensional heat transfer model was used to calculate the coupling heat transfer through the wall, considering heat transfer at circumferential direction, axial direction and radial direction. Based on the study the mechanism of the cooling structure heat transfer, the computing model was employed and achieved the rule of heat flux and temperature of gas wall. Simultaneously, influence of different cooling structure was performed. The results indicated that the cooling structure with raised structure could better reduce the temperature of the chamber wall.


2021 ◽  
Vol 6 ◽  
pp. 18
Author(s):  
Sabrina Horr ◽  
Hocine Mohcene ◽  
Hamza Bouguettaia ◽  
Hocine Ben Moussa

The performance of a solid oxide fuel cell (SOFC) was examined using 3D computational fluid dynamics to model mass and heat flows inside the channels. In the present investigation, a SOFC fuel cell with a new flow field based on a sinusoidal flow has been studied. The latter was tested and compared with a single flow using ANSYS FLUENT. The obtained results showed that at a given operating voltage, the maximum power for the sinusoidal and the single flow fields were 1.43 and 1.35 W/cm2, respectively. By taking in addition, into account the concentration, activation and Ohmic losses; it was noticed that the distribution of velocity and temperature for the sinusoidal flow led to bettered results. Furthermore, it was observed that the maximum use of H2 mass fraction consumed in sinusoidal and single flow field designs were 60% and 55% respectively. Similarly, the highest H2O mass fraction values produced for the sinusoidal and single flow designs were 42% and 34% respectively. This model was validated and confronted to previous data. The present results agree well with reported studies in literature.


Author(s):  
Xiang Zhao ◽  
Trent Montgomery ◽  
Sijun Zhang

The nuclear thermal rocket is one of the candidate propulsion systems for future space exploration including traveling to Mars and other planets of the solar system. Nuclear thermal propulsion can provide a much higher specific impulse than the best chemical propulsion available today. A basic nuclear propulsion system consists of one or several nuclear reactors that heat hydrogen propellant to high temperatures and then allow the heated hydrogen and its reacting product to flow through a nozzle to produce thrust. This paper presents computational study on a single flow element in a nuclear thermal rocket. The computational results provide both detailed and global thermo-fluid environments of a single flow element for thermal stress estimation and insight for possible occurrence of mid-section corrosion.


1994 ◽  
Author(s):  
G. Ebenhoch ◽  
T. M. Speer

The design of cooling systems for gas turbine engine blades and vanes calls for efficient simulation programs. The main purpose of the described program is to determine the complete boundary condition at the coolant side to support a temperature calculation for the solid. For the simulation of convection and heat pick up of the coolant flow, pressure loss, and further effects to be found in a rotating frame, the cooling systems are represented by networks of nodes and flow elements. Within each flow element the fluid flow is modelled by a system of ordinary differential equations based on the one-dimensional conservation of mass, momentum, and energy. In this respect, the computer program differs from many other network computation programs. Concerning cooling configurations in rotating systems, the solution for a single flow element or the entire flow system is not guaranteed to be unique. This is due to rotational forces In combination with heat transfer and causes considerable computational difficulties which can be overcome by a special path following method in which the angular velocity is selected as the parameter of homotopy. Results of the program are compared with measurements for three applications.


Sign in / Sign up

Export Citation Format

Share Document