Towards a Combined Gene and Cell Therapy for Lung Diseases: The Case of Induced Pluripotent Stem Cells

2012 ◽  
Vol 01 (01) ◽  
Author(s):  
Massimo Conese
2013 ◽  
Vol 112 (3) ◽  
pp. 523-533 ◽  
Author(s):  
Hideyuki Okano ◽  
Masaya Nakamura ◽  
Kenji Yoshida ◽  
Yohei Okada ◽  
Osahiko Tsuji ◽  
...  

2013 ◽  
Vol 125 (7) ◽  
pp. 319-327 ◽  
Author(s):  
Wei Eric Wang ◽  
Xiongwen Chen ◽  
Steven R. Houser ◽  
Chunyu Zeng

Stem cell therapy has emerged as a promising strategy for cardiac and vascular repair. The ultimate goal is to rebuild functional myocardium by transplanting exogenous stem cells or by activating native stem cells to induce endogenous repair. CS/PCs (cardiac stem/progenitor cells) are one type of adult stem cell with the potential to differentiate into cardiac lineages (cardiomyocytes, smooth muscle cells and endothelial cells). iPSCs (induced pluripotent stem cells) also have the capacity to differentiate into necessary cells to rebuild injured cardiac tissue. Both types of stem cells have brought promise for cardiac repair. The present review summarizes recent advances in cardiac cell therapy based on these two cell sources and discusses the advantages and limitations of each candidate. We conclude that, although both types of stem cells can be considered for autologous transplantation with promising outcomes in animal models, CS/PCs have advanced more in their clinical application because iPSCs and their derivatives possess inherent obstacles for clinical use. Further studies are needed to move cell therapy forward for the treatment of heart disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Seung-Hun Oh ◽  
Yong-Woo Jeong ◽  
Wankyu Choi ◽  
Jeong-Eun Noh ◽  
Suji Lee ◽  
...  

Stem cell therapy is a promising option for treating functional deficits in the stroke-damaged brain. Induced pluripotent stem cells (iPSCs) are attractive sources for cell therapy as they can be efficiently differentiated into neural lineages. Episomal plasmids (EPs) containing reprogramming factors can induce nonviral, integration-free iPSCs. Thus, iPSCs generated by an EP-based reprogramming technique (ep-iPSCs) have an advantage over gene-integrating iPSCs for clinical applications. However, there are few studies regarding the in vivo efficacy of ep-iPSCs. In this study, we investigated the therapeutic potential of intracerebral transplantation of neural precursor cells differentiated from ep-iPSCs (ep-iPSC-NPCs) in a rodent stroke model. The ep-iPSC-NPCs were transplanted intracerebrally in a peri-infarct area in a rodent stroke model. Rats transplanted with fibroblasts and vehicle were used as controls. The ep-iPSC-NPC-transplanted animals exhibited functional improvements in behavioral and electrophysiological tests. A small proportion of ep-iPSC-NPCs were detected up to 12 weeks after transplantation and were differentiated into both neuronal and glial lineages. In addition, transplanted cells promoted endogenous brain repair, presumably via increased subventricular zone neurogenesis, and reduced poststroke inflammation and glial scar formation. Taken together, these results strongly suggest that intracerebral transplantation of ep-iPSC-NPCs is a useful therapeutic option to treat clinical stroke through multimodal therapeutic mechanisms.


Sign in / Sign up

Export Citation Format

Share Document