Global Carbon Cycle and Organic Matter Accumulation in the Earth Crust

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Ivlev AA
Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4778 ◽  
Author(s):  
Wentong He ◽  
Youhong Sun ◽  
Wei Guo ◽  
Xuanlong Shan ◽  
Siyuan Su ◽  
...  

The Cretaceous Era has always been a focus of geologic and palaeoenvironmental studies. Previous researchers believed that the impact of the global carbon cycle represents significant short-term global biogeochemical fluctuations, leading to the formation of a large number of organic rich sediments in the marine environment. During the Turonian, a large number of organic-rich oil shales were deposited in the lakes of the Songliao Basin in the Qingshankou Formation. How the depositional environment affected the formation of oil shales in continental lakes and the characteristics of these oil shales remain controversial. In this paper, through sampling of Qingshankou Formation strata, various testing methods are used to provide a variety of new data to study the characteristics of oil shales and palaeoenvironment evolution history in the Songliao Basin. The research of the sediments in the Qingshankou Formation in the Fuyu oilfield, Songliao Basin, via result analysis revealed that the oil shales possess an excellent oil-generation potential with moderate-high total organic carbon (TOC) levels (0.58–9.43%), high hydrogen index (HI) values (265–959 mg hydrocarbons (HC)/g TOC), high extractable organic matter (EOM) levels (2.50–6.96 mg/g TOC) and high hydrocarbon fractions (48–89%). The sources of the organic matter were mainly zooplankton, red algae and higher plants (including marine organisms). The aqueous palaeoenvironment of the Qingshankou Formation was a saline water environment with a high sulfate concentration, which promoted an increase in nutrients and stratification of the water density in the lake basin. Oxygen consumption in the bottom water layer promoted the accumulation and burial of high-abundance organic matter, thus forming the high-quality oil shales in the Qingshankou Formation. The global carbon cycle, warm-humid palaeoclimate, dynamic local biogeochemical cycling and relative passive tectonism were the most likely reasons for the TOC increase and negative δ13Corg deviation.


2012 ◽  
Vol 443 (2) ◽  
pp. 489-492 ◽  
Author(s):  
S. I. Bartsev ◽  
A. G. Degermendzhi ◽  
A. M. Fedotov ◽  
S. B. Medvedev ◽  
A. I. Pestunov ◽  
...  

1999 ◽  
Vol 159 (1-4) ◽  
pp. 305-317 ◽  
Author(s):  
Siegfried Franck ◽  
Konrad Kossacki ◽  
Christine Bounama

Eos ◽  
2017 ◽  
Author(s):  
Sarah Witman

Researchers study how oceans respire carbon, reexamining a critical part of the global carbon cycle.


2011 ◽  
Vol 3 (1) ◽  
pp. 385-410 ◽  
Author(s):  
D. R. Gröcke ◽  
R. S. Hori ◽  
J. Trabucho-Alexandre ◽  
D. B. Kemp ◽  
L. Schwark

Abstract. Oceanic anoxic events were time intervals in the Mesozoic characterized by widespread distribution of marine organic-rich sediments (black shales) and significant perturbations in the global carbon cycle. The expression of these perturbations is globally recorded in sediments as excursions in the carbon isotope record irrespective of lithology or depositional environment. During the Early Toarcian, black shales were deposited on the epi- and peri-continental shelves of Pangaea and these sedimentary rocks are associated with a pronounced (ca. 7‰) negative (organic) carbon isotope excursion (CIE) which is thought to be the result of a major perturbation in the global carbon cycle. For this reason, the Early Toarcian is thought to represent an oceanic anoxic event (the T-OAE). Associated with this event, there were pronounced perturbations in global weathering rates and seawater temperatures. Although it is commonly asserted that the T-OAE is a global event and that the distribution of black shales is likewise global, an isotopic and/or organic-rich expression of this event has as yet only been recognized on epi- and peri-continental Pangaean localities. To address this issue, the carbon isotope composition of organic matter (δ13Corg) of Early Toarcian cherts from Japan that were deposited in the open Panthalassa Ocean was analysed. The results show the presence of a major (>6‰) negative excursion in δ13Corg that, based on radiolarian biostratigraphy, is a correlative of the Early Toarcian negative CIE known from European epicontinental strata. Furthermore, a secondary ca. −2‰ excursion in δ13Corg is also recognized lower in the studied succession that, within the current biostratigraphical resolution, is likely to represent the excursion that occurs close to the Pliensbachian/Toarcian boundary and which is also recorded in European epicontinental successions. These results from the open ocean realm suggest that, in conjunction with other previously published datasets, these major Early Jurassic carbon cycle perturbations affected all active global reservoirs of the exchangeable carbon cycle (deep marine, shallow marine, atmospheric). An extremely negative δ13Corg value (−57‰) during the peak of the T-OAE is also reported, which suggests that the inferred open ocean mid-water oxygen minimum layer within which these sediments are thought to have been deposited was highly enriched in methanotrophic bacteria, since these organisms are the only plausible producers of such 12C-enriched organic matter.


2015 ◽  
Vol 21 (4) ◽  
pp. 1621-1633 ◽  
Author(s):  
Cristina Santín ◽  
Stefan H. Doerr ◽  
Caroline M. Preston ◽  
Gil González‐Rodríguez

Sign in / Sign up

Export Citation Format

Share Document