scholarly journals In vitro Antifungal Activity of Aegle marmelos, Syzygium cumini and Pongamia pinnata Extracts against Fusarium oxysporum f. sp. cicero

Author(s):  
Y D More ◽  
R M Gade ◽  
A V Shitole
2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Hana Ighachane ◽  
Brahim Boualy ◽  
Mustapha Ait Ali ◽  
My. H. Sedra ◽  
Larbi El Firdoussi ◽  
...  

Various unsaturated natural terpenes were selectively converted to the corresponding polychlorinated products in good yields using iron acetylacetonate in combination with nucleophilic cocatalyst. The synthesized compounds were evaluated for their in vitro antifungal activity. The antifungal bioassays showed that 2c and 2d possessed significant antifungal activity against Fusarium oxysporum f. sp. albedinis (Foa), Fusarium oxysporum f. sp. canariensis (Foc), and Verticillium dahliae (Vd).


2017 ◽  
Vol 16 (6) ◽  
pp. 167-176 ◽  
Author(s):  
Tatiana Eugenia Şesan ◽  
Elena Enache ◽  
Beatrice Michaela Iacomi ◽  
Maria Oprea ◽  
Florin Oancea ◽  
...  

1998 ◽  
Vol 11 (11) ◽  
pp. 1069-1077 ◽  
Author(s):  
Thomas F. C. Chin-A-Woeng ◽  
Guido V. Bloemberg ◽  
Arjan J. van der Bij ◽  
Koen M. G. M. van der Drift ◽  
Jan Schripsema ◽  
...  

Seventy bacterial isolates from the rhizosphere of tomato were screened for antagonistic activity against the tomato foot and root rot-causing fungal pathogen Fusarium oxysporum f. sp. radicis-lycopersici. One isolate, strain PCL1391, appeared to be an efficient colonizer of tomato roots and an excellent biocontrol strain in an F. oxysporum/tomato test system. Strain PCL1391 was identified as Pseudomonas chlororaphis and further characterization showed that it produces a broad spectrum of antifungal factors (AFFs), including a hydrophobic compound, hydrogen cyanide, chitinase(s), and protease(s). Through mass spectrometry and nuclear magnetic resonance, the hydrophobic compound was identified as phenazine-1-carboxamide (PCN). We have studied the production and action of this AFF both in vitro and in vivo. Using a PCL1391 transposon mutant, with a lux reporter gene inserted in the phenazine biosynthetic operon (phz), we showed that this phenazine biosynthetic mutant was substantially decreased in both in vitro antifungal activity and biocontrol activity. Moreover, with the same mutant it was shown that the phz biosynthetic operon is expressed in the tomato rhizosphere. Comparison of the biocontrol activity of the PCN-producing strain PCL1391 with those of phenazine-1-carboxylic acid (PCA)-producing strains P. fluorescens 2-79 and P. aureofaciens 30-84 showed that the PCN-producing strain is able to suppress disease in the tomato/F. oxysporum system, whereas the PCA-producing strains are not. Comparison of in vitro antifungal activity of PCN and PCA showed that the antifungal activity of PCN was at least 10 times higher at neutral pH, suggesting that this may contribute to the superior biocontrol performance of strain PCL1391 in the tomato/F. oxysporum system.


2005 ◽  
Vol 40 (1-2) ◽  
pp. 43-54 ◽  
Author(s):  
K. Yamunarani ◽  
R. Jaganathan ◽  
R. Bhaskaran ◽  
P. Govindaraju ◽  
R. Velazhahan

Author(s):  
Rakesh Patel ◽  
Hardik Patel ◽  
Ashok Baria

The aim of this work was to prepare and evaluate the topical carbopol gel formulation containing ketoconazole encapsulated liposomes. Ketoconazole loaded liposomes were prepared by thin film hydration technique. The prepared liposomes were incorporated into 1% carbopol gel, and the systems were evaluated for in-vitro drug release, drug retention into skin and in-vitro antifungal activity. The in-vitro permeation of ketoconazole using wistar albino rat skin from liposomal gel was compared with that of plain drug gel and also with plain drug cream containing 2% w/w of ketoconazole. The release of ketoconazole from liposomal gel was much slower than from non liposomal formulations. Gel containing liposomal ketoconazole showed maximum antifungal activity after 30 hours over plain ketoconazole gel and cream formulations.


Sign in / Sign up

Export Citation Format

Share Document