scholarly journals Development of a new psychophysical method to assess intranasal trigeminal chemosensory function

2019 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
C. Huart ◽  
T. Hummel ◽  
C. Kaehling ◽  
I. Konstantinidis ◽  
V. Hox ◽  
...  
Author(s):  
Mattis Bertlich ◽  
Clemens Stihl ◽  
Enzo Lüsebrink ◽  
Johannes C. Hellmuth ◽  
Clemens Scherer ◽  
...  

Abstract Purpose It has been established that the infection with SARS-CoV-2 may cause an impairment of chemosensory function. However, there is little data on the long-term effects of SARS-CoV-2 infection on chemosensory function. Methods Twenty three SARS-CoV-2-positive patients diagnosed in spring 2020 with subjective hyposmia (out of 57 positive patients, 40.3%) were compared to SARS-CoV-2-positive patients without hyposmia (n = 19) and SARS-CoV-2-negative patients (n = 14). Chemosensory function was assessed by the Brief Smell Identification Test (BSIT), Taste Strips (TS), Visual Analogue Scales (VAS), and the SNOT-22. The initial cohort with hyposmia were also examined at 8 weeks and 6 months after initial examination. Results There were no differences between the SARS-CoV-2-positive cohort without hyposmia and negative controls in terms of BSIT (8.5 ± 2.6 vs. 10.2 ± 1.8), TS (3.4 ± 0.6 vs. 3.9 ± 0.3) or VAS (2.1 ± 1.3 vs. 1.1 ± 0.5); yet the SNOT-22 was significantly elevated (27.7 ± 11.2 vs. 16.4 ± 10.8). The SARS-CoV-2-positive group with hyposmia performed significantly poorer in BSIT (4.0 ± 1.7 vs. 8.5 ± 2.6/10.2 ± 1.8), TS (2.6 ± 1.3 vs. 3.4 ± 0.6/3.9 ± 0.3), and VAS (7.9 ± 2.2 vs. 2.1 ± 1.3/1.1 ± 0.5) compared to both control groups. At week 8 and month 6 control, six and five patients, respectively, still suffered from subjectively and objectively impaired chemosensory function. The other patients had recovered in both respects. Conclusion SARS-CoV-2 patients with subjectively impaired chemosensory function regularly perform poorly in objective measurements. About 70% of patients suffering from olfactory dysfunction in SARS-CoV-2 quickly recover—the rest still suffers from considerable impairment 6 months after infection.


2005 ◽  
Vol 22 (3) ◽  
pp. 389-399 ◽  
Author(s):  
Marc Pouliot ◽  
Simon Grondin

One of the features of the auditory system is its ability to efficiently process events that occur in rapid succession. The aim of the present study is to propose a new way of investigating sensitivity to auditory tempo changes. More specifically, it proposes to compare the relative sensitivity (bias) to acceleration and deceleration in both musical and monotonal conditions. Bias was measured with (1) a conventional psychophysical method known as the method of constant stimuli (MCS) and (2) a so-called method of dynamic stimuli (MDS). The latter method consists in responding with a finger press as soon as a near-continual tempo change is detected. With the MCS, there was no preference, as estimated by the point of subjective equality, between acceleration and deceleration in the monotonal condition, but there was a preference in the musical condition that indicated more facility for estimating decelerations than accelerations. The results obtained with the MDS are consistent with the MCS results, given that the response time was faster for decelerations than accelerations in the musical condition but not in the monotonal condition. We conclude that the MDS is a sensitive tool for investigating slight tempo variations.


1984 ◽  
Vol 18 ◽  
pp. 366A-366A
Author(s):  
Merle Shapera ◽  
Donald Moel ◽  
Gary Beauchamp ◽  
Richard Cohn ◽  
Robert Gesteland

2009 ◽  
Vol 17 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Priscilla Hortense ◽  
Fátima Aparecida Emm Faleiros Sousa

The general aim of this study was to create a comparative scale of different types of pain through different psychophysical methods and different samples. The psychophysical methods used were magnitude estimation and category estimation. The participants were 30 patients from different outpatient clinics, 30 physicians and 30 nurses. The results were: 1) cancer pain, myocardial infarction pain, renal colic, burn-injury pain, and labor pain were considered more intense, regardless of the psychophysical method used or sample studied; 2) The ranking of different pain intensities, comparing the different psychophysical methods used, resulted in significant agreement levels with Kendal values close to 1.00; 3) There were divergences in the perception of the intensities of some types of pain. These divergences were especially observed between professionals and patients.


2014 ◽  
Vol 116 (4) ◽  
pp. 439-450 ◽  
Author(s):  
Michael S. Carroll ◽  
Pallavi P. Patwari ◽  
Anna S. Kenny ◽  
Cindy D. Brogadir ◽  
Tracey M. Stewart ◽  
...  

Congenital central hypoventilation syndrome (CCHS) is a neurodevelopmental disorder characterized by life-threatening hypoventilation, possibly resulting from disruption of central chemosensory integration. However, animal models suggest the possibility of residual chemosensory function in the human disease. Cardioventilatory function in a large cohort with CCHS and verified paired-like homeobox 2B ( PHOX2B) mutations was assessed to determine the extent and genotype dependence of any residual chemosensory function in these patients. As part of inpatient clinical care and evaluation, 64 distinct studies from 32 infants, children, and young adults with the disorder were evaluated for physiological response to three different inspired steady-state gas exposures of 3 min each: hyperoxia [100% oxygen (O2)]; hyperoxic hypercapnia [95% O2 and 5% carbon dioxide (CO2)]; and hypoxic hypercapnia [14% O2 and 7% CO2 balanced with nitrogen (N2)]. These were followed by a hypoxia challenge consisting of five or seven breaths of N2 (100% N2). In addition, a control group of 15 young adults was exposed to all but the hypoxic challenge. Comprehensive monitoring was used to derive breath-to-breath and beat-to-beat measures of ventilatory, cardiovascular, and cerebrovascular function. On average, patients showed a residual awake ventilatory response to chemosensory challenge, independent of the specific patient PHOX2B genotype. Graded dysfunction in cardiovascular regulation was found to associate with genotype, suggesting differential effects on different autonomic subsystems. In addition, differences between cases and controls in the cerebrovascular response to chemosensory challenge may indicate alterations in cerebral autoregulation. Thus residual cardiorespiratory responses suggest partial preservation of central nervous system networks that could provide a fulcrum for potential pharmacological interventions.


Sign in / Sign up

Export Citation Format

Share Document