Adomian decomposition method for solving a Generalized Korteweg – De Vries equation with boundary conditions

2011 ◽  
Vol 23 (2) ◽  
pp. 79-90
Author(s):  
Bothayna Kashkari
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Raghda A. M. Attia ◽  
S. H. Alfalqi ◽  
J. F. Alzaidi ◽  
Mostafa M. A. Khater ◽  
Dianchen Lu

This paper investigates the analytical, semianalytical, and numerical solutions of the 2+1–dimensional integrable Schwarz–Korteweg–de Vries (SKdV) equation. The extended simplest equation method, the sech-tanh method, the Adomian decomposition method, and cubic spline scheme are employed to obtain distinct formulas of solitary waves that are employed to calculate the initial and boundary conditions. Consequently, the numerical solutions of this model can be investigated. Moreover, their stability properties are also analyzed. The solutions obtained by means of these techniques are compared to unravel relations between them and their characteristics illustrated under the suitable choice of the parameter values.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Necdet Bildik ◽  
Mustafa Inc

We present a comparison between Adomian decomposition method (ADM) and Tau method (TM) for the integro-differential equations with the initial or the boundary conditions. The problem is solved quickly, easily, and elegantly by ADM. The numerical results on the examples are shown to validate the proposed ADM as an effective numerical method to solve the integro-differential equations. The numerical results show that ADM method is very effective and convenient for solving differential equations than Tao method.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdon Atangana ◽  
Aydin Secer

We put into practice a relatively new analytical technique, the homotopy decomposition method, for solving the nonlinear fractional coupled-Korteweg-de-Vries equations. Numerical solutions are given, and some properties exhibit reasonable dependence on the fractional-order derivatives’ values. The fractional derivatives are described in the Caputo sense. The reliability of HDM and the reduction in computations give HDM a wider applicability. In addition, the calculations involved in HDM are very simple and straightforward. It is demonstrated that HDM is a powerful and efficient tool for FPDEs. It was also demonstrated that HDM is more efficient than the adomian decomposition method (ADM), variational iteration method (VIM), homotopy analysis method (HAM), and homotopy perturbation method (HPM).


Author(s):  
Kuljeet Singh ◽  
Ranjan Das ◽  
Rohit K Singla

In this paper, the implementation of the Adomian decomposition method is demonstrated to solve a nonlinear heat transfer problem for a stepped fin involving all temperature-dependent means of heat transfer and nonlinear boundary conditions. Unlike conventional insulated tip assumption, to make the present problem more practical, the fin tip is assumed to disperse heat by convection and radiation. Thermal parameters such as the thermal conductivity, the surface heat transfer coefficient and the surface emissivity are considered to be temperature-dependent. Adomian polynomials are first obtained and then a set of Adomian decomposition method results is validated with pertinent results of the differential transformation method reported in the literature. Effects of different thermo-physical parameters on the temperature distribution and the efficiency have been exemplified. The study reveals that for a given set of conditions, the stepped fin may perform better than the straight fin.


2017 ◽  
Vol 23 (9) ◽  
pp. 1345-1363 ◽  
Author(s):  
Desmond Adair ◽  
Martin Jaeger

The governing equations for a pre-twisted rotating cantilever beam are derived and used for free vibration analysis of a pre-twisted rotating beam whose flexural displacements are coupled in two planes. First differential equations of motion of a rotating twisted beam, including terms due to centrifugal stiffening, are derived for an Euler–Bernoulli beam undergoing free natural vibrations. The general solutions of these equations are obtained on applying the Adomian modified decomposition method (AMDM). The AMDM allows the governing differential equations to become recursive algebraic equations and the boundary conditions to become simple algebraic frequency equations suitable for symbolic computation. With additional simple mathematical operations on the model, the natural frequencies and corresponding closed-form series solution of the mode shape can be obtained simultaneously. Two main advantages of the application of the AMDM are, for the cases considered here, its fast convergence rate to the solution with the high degree of accuracy. As the AMDM technique is systematic, it is found straight-forward to modify boundary conditions from one case to the next. Comparison of results with published data showed the present calculations to be in reasonable agreement.


Sign in / Sign up

Export Citation Format

Share Document