Inelastic Behaviour of Reinforced Concrete Structures Considering the Bond-Slip Effect

Author(s):  
H.G. Kwak ◽  
C.K. Na ◽  
S.W. Kim ◽  
S.T. Kang
2010 ◽  
Vol 7 (4) ◽  
pp. 347-364 ◽  
Author(s):  
Norberto Dominguez ◽  
Marco Aurelio Fernandez ◽  
Adnan Ibrahimbegovic

2015 ◽  
Vol 32 (7) ◽  
pp. 1934-1958 ◽  
Author(s):  
C Mang ◽  
L Jason ◽  
L Davenne

Purpose – The purpose of this paper is to present a new bond slip model for reinforced concrete structures. It consists in an interface element (3D) which represents the interface between concrete (modeled in 3D) and steel, modeled using 1D truss elements. Design/methodology/approach – The formulation of the interface element is presented and verified through a comparison with an analytical solution on an academic case. Finally, the model is compared with experimental results on a reinforced concrete tie. Findings – Contrary to the classical perfect or “no-slip” relation which supposes the same displacement between steel and concrete, the proposed model is able to reproduce both global (force-displacement curve) and local (crack openings) results. Originality/value – The proposed approach, applicable to large-scale computations, represents a valuable alternative to the no-slip relation hypothesis to correctly capture the crack properties of reinforced concrete structures.


2015 ◽  
Vol 8 (6) ◽  
pp. 787-799 ◽  
Author(s):  
A. R. V. WOLENSKI ◽  
S. S. DE CASTRO ◽  
S. S. PENNA ◽  
R. L. S. PITANGUEIRA ◽  
B. V. SILVA ◽  
...  

Abstract The modeling of reinforced concrete structures has taken advantage of the increasing progress on Computational Mechanics, in such way that complex phenomena, such as cracking and crushing, creep, reinforcement yielding, steel-concrete bond loss, can be modeled in a reasonable realistic way, using the proper set of numerical and computational resources. Among several options, the ones based on the Finite Element Method (FEM) allow complex analysis simulations of reinforced concrete structures, including the interaction of different nonlinear effects. This paper deals with the nonlinear finite element analysis of the bond-slip between reinforcing steel and concrete, taking into account an experimental study previously performed. The FEM analysis presented uses a combination of resources where the material behavior of concrete is described by the Microplane Constitutive Model, and an embedded reinforcement model is used to represent steel inside the concrete and take into account the effect of bond-slip. The FEM models were created using the INSANE (INteractive Structural ANalysis Environment) computational system, open source software that has a set of FEM tools for nonlinear analysis of reinforced concrete structures. The correlations between numerical-experimentals results and several parameters validate the proposed combination of resources and identifies the significance of various effects on the response.


Author(s):  
Pâmela Daniela Nogueira Reges ◽  
Roque Luiz da Silva Pitangueira ◽  
Leandro Lopes da Silva

Abstract The development of numerical and computational resources that can present reliable models for the analysis of reinforced concrete structures is mainly driven by its widespread use. Considering that reinforced concrete is a composite material and bond is the load-carrying mechanism, these models must consider that the structural behavior is affected by the interaction between concrete and reinforcement. On this basis, the Finite Element Method (FEM) is a well-established method able to provide consistent results for reinforced concrete modeling through reinforcement and bond models. Nevertheless, to simplify the analysis, the hypothesis of strain compatibility between concrete and reinforcement is usually considered. Under certain loads and specific geometries, this hypothesis is not valid, and the bond-slip phenomenon must be considered to fully characterize the structural behavior. To fulfill this need, this paper presents a graphic interface that enables the modeling of reinforced concrete structures through discrete and embedded reinforcement models, with the possibility to include the bond-slip phenomenon based on several constitutive laws proposed in the literature. The computational implementations were held in the INSANE (INteractive Structural ANalysis Environment), an open-source software based on the Object-Oriented Programming paradigm, which enclosures several constitutive models for nonlinear concrete modeling and different numerical techniques, and a post-processing application able to represent the results by way of a friendly-user graphic interface.


Currently, prefabricated reinforced concrete structures are widely used for the construction of buildings of various functional purposes. In this regard, has been developed SP 356.1325800.2017 "Frame Reinforced Concrete Prefabricated Structures of Multi-Storey Buildings. Design Rules", which establishes requirements for the calculation and design of precast reinforced concrete structures of frame buildings of heavy, fine-grained and lightweight structural concrete for buildings with a height of not more than 75 m. The structure of the set of rules consists of eight sections and one annex. The document reviewed covers the design of multi-story framed beam structural systems, the elements of which are connected in a spatial system with rigid (partially compliant) or hinged joints and concreting of the joints between the surfaces of the abutting precast elements. The classification of structural schemes of building frames, which according to the method of accommodation of horizontal loads are divided into bracing, rigid frame bracing and framework, is presented. The list of structural elements, such as foundations, columns, crossbars, ribbed and hollow floor slabs and coatings, stiffness elements and external enclosing structures is given; detailed instructions for their design are provided. The scope of the developed set of rules includes all natural and climatic zones of the Russian Federation, except seismic areas with 7 or more points, as well as permafrost zones.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


Sign in / Sign up

Export Citation Format

Share Document