scholarly journals A Viscosity-Splitting Method for the Navier-Stokes/ Darcy Problem

2020 ◽  
Vol 12 (1) ◽  
pp. 251-277
Author(s):  
Yunxia Wang
Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Le Thi Thu Hien ◽  
Nguyen Van Chien

The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.


2013 ◽  
Vol 477-478 ◽  
pp. 281-284
Author(s):  
Jie Yang ◽  
Song Ping Wu

An immersed boundary method based on the ghost-cell approach is presented in this paper. The compressible Navier-Stokes equations are discretized using a flux-splitting method for inviscid fluxes and second-order central-difference for the viscous components. High-order accuracy is achieved by using weighted essentially non-oscillatory (WENO) and Runge-Kutta schemes. Boundary conditions are reconstructed by a serial of linear interpolation and inverse distance weighting interpolation of flow variables in fluid domain. Two classic flow problems (flow over a circular cylinder, and a NACA 0012 airfoil) are simulated using the present immersed boundary method, and the predictions show good agreement with previous computational results.


Author(s):  
B. Grüber ◽  
V. Carstens

This paper presents the numerical results of a code for computing the unsteady transonic viscous flow in a two-dimensional cascade of harmonically oscillating blades. The flow field is calculated by a Navier-Stokes code, the basic features of which are the use of an upwind flux vector splitting scheme for the convective terms (Advection Upstream Splitting Method), an implicit time integration and the implementation of a mixing length turbulence model. For the present investigations two experimentally investigated test cases have been selected in which the blades had performed tuned harmonic bending vibrations. The results obtained by the Navier-Stokes code are compared with experimental data, as well as with the results of an Euler method. The first test case, which is a steam turbine cascade with entirely subsonic flow at nominal operating conditions, is the fourth standard configuration of the “Workshop on Aeroelasticity in Turbomachines”. Here the application of an Euler method already leads to acceptable results for unsteady pressure and damping coefficients and hence this cascade is very appropriate for a first validation of any Navier-Stokes code. The second test case is a highly-loaded gas turbine cascade operating in transonic flow at design and off-design conditions. This case is characterized by a normal shock appearing on the rear part of the blades’s suction surface, and is very sensitive to small changes in flow conditions. When comparing experimental and Euler results, differences are observed in the steady and unsteady pressure coefficients. The computation of this test case with the Navier-Stokes method improves to some extent the agreement between the experiment and numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document