Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter

2016 ◽  
Vol 19 (4) ◽  
pp. 944-969 ◽  
Author(s):  
Jun Zhu ◽  
Xinghui Zhong ◽  
Chi-Wang Shu ◽  
Jianxian Qiu

AbstractIn this paper, we propose a new type of weighted essentially non-oscillatory (WENO) limiter, which belongs to the class of Hermite WENO (HWENO) limiters, for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving hyperbolic conservation laws. This new HWENO limiter is a modification of the simple WENO limiter proposed recently by Zhong and Shu [29]. Both limiters use information of the DG solutions only from the target cell and its immediate neighboring cells, thus maintaining the original compactness of the DG scheme. The goal of both limiters is to obtain high order accuracy and non-oscillatory properties simultaneously. The main novelty of the new HWENO limiter in this paper is to reconstruct the polynomial on the target cell in a least square fashion [8] while the simple WENO limiter [29] is to use the entire polynomial of the original DG solutions in the neighboring cells with an addition of a constant for conservation. The modification in this paper improves the robustness in the computation of problems with strong shocks or contact discontinuities, without changing the compact stencil of the DG scheme. Numerical results for both one and two dimensional equations including Euler equations of compressible gas dynamics are provided to illustrate the viability of this modified limiter.

2012 ◽  
Vol 11 (3) ◽  
pp. 985-1005 ◽  
Author(s):  
Jun Zhu ◽  
Jianxian Qiu

AbstractThis paper further considers weighted essentially non-oscillatory (WENO) and Hermite weighted essentially non-oscillatory (HWENO) finite volume methods as limiters for Runge-Kutta discontinuous Galerkin (RKDG) methods to solve problems involving nonlinear hyperbolic conservation laws. The application discussed here is the solution of 3-D problems on unstructured meshes. Our numerical tests again demonstrate this is a robust and high order limiting procedure, which simultaneously achieves high order accuracy and sharp non-oscillatory shock transitions.


2011 ◽  
Vol 9 (2) ◽  
pp. 441-480 ◽  
Author(s):  
Shuangzhang Tu ◽  
Gordon W. Skelton ◽  
Qing Pang

AbstractThis paper presents a novel high-order space-time method for hyperbolic conservation laws. Two important concepts, the staggered space-time mesh of the space-time conservation element/solution element (CE/SE) method and the local discontinuous basis functions of the space-time discontinuous Galerkin (DG) finite element method, are the two key ingredients of the new scheme. The staggered space-time mesh is constructed using the cell-vertex structure of the underlying spatial mesh. The universal definitions of CEs and SEs are independent of the underlying spatial mesh and thus suitable for arbitrarily unstructured meshes. The solution within each physical time step is updated alternately at the cell level and the vertex level. For this solution updating strategy and the DG ingredient, the new scheme here is termed as the discontinuous Galerkin cell-vertex scheme (DG-CVS). The high order of accuracy is achieved by employing high-order Taylor polynomials as the basis functions inside each SE. The present DG-CVS exhibits many advantageous features such as Riemann-solver-free, high-order accuracy, point-implicitness, compactness, and ease of handling boundary conditions. Several numerical tests including the scalar advection equations and compressible Euler equations will demonstrate the performance of the new method.


2017 ◽  
Vol 21 (3) ◽  
pp. 623-649 ◽  
Author(s):  
Jun Zhu ◽  
Xinghui Zhong ◽  
Chi-Wang Shu ◽  
Jianxian Qiu

AbstractIn this paper we generalize a new type of compact Hermite weighted essentially non-oscillatory (HWENO) limiter for the Runge-Kutta discontinuous Galerkin (RKDG) method, which was recently developed in [38] for structured meshes, to two dimensional unstructured meshes. The main idea of this HWENO limiter is to reconstruct the new polynomial by the usage of the entire polynomials of the DG solution from the target cell and its neighboring cells in a least squares fashion [11] while maintaining the conservative property, then use the classical WENO methodology to form a convex combination of these reconstructed polynomials based on the smoothness indicators and associated nonlinear weights. The main advantage of this new HWENO limiter is the robustness for very strong shocks and simplicity in implementation especially for the unstructured meshes considered in this paper, since only information from the target cell and its immediate neighbors is needed. Numerical results for both scalar and system equations are provided to test and verify the good performance of this new limiter.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aziz Madrane ◽  
Fayssal Benkhaldoun

Abstract We present an entropy stable Discontinuous Galerkin (DG) finite element method to approximate systems of 2-dimensional symmetrizable conservation laws on unstructured grids. The scheme is constructed using a combination of entropy conservative fluxes and entropy-stable numerical dissipation operators. The method is designed to work on structured as well as on unstructured meshes. As solutions of hyperbolic conservation laws can develop discontinuities (shocks) in finite time, we include a multidimensional slope limitation step to suppress spurious oscillations in the vicinity of shocks. The numerical scheme has two steps: the first step is a finite element calculation which includes calculations of fluxes across the edges of the elements using 1-D entropy stable solver. The second step is a procedure of stabilization through a truly multi-dimensional slope limiter. We compared the Entropy Stable Scheme (ESS) versus Roe’s solvers associated with entropy corrections and Osher’s solver. The method is illustrated by computing solution of the two stationary problems: a regular shock reflection problem and a 2-D flow around a double ellipse at high Mach number.


Sign in / Sign up

Export Citation Format

Share Document