scholarly journals Stick-slip Motion of Moving Contact Line on Chemically Patterned Surfaces

2010 ◽  
Vol 7 (3) ◽  
pp. 403-422 ◽  
Author(s):  
Congmin Wu
2008 ◽  
Vol 605 ◽  
pp. 59-78 ◽  
Author(s):  
XIAO-PING WANG ◽  
TIEZHENG QIAN ◽  
PING SHENG

We simulate the moving contact line in two-dimensional chemically patterned channels using a diffuse-interface model with the generalized Navier boundary condition. The motion of the fluid–fluid interface in confined immiscible two-phase flows is modulated by the chemical pattern on the top and bottom surfaces, leading to a stick–slip behaviour of the contact line. The extra dissipation induced by this oscillatory contact-line motion is significant and increases rapidly with the wettability contrast of the pattern. A critical value of the wettability contrast is identified above which the effect of diffusion becomes important, leading to the interesting behaviour of fluid–fluid interface breaking, with the transport of the non-wetting fluid being assisted and mediated by rapid diffusion through the wetting fluid. Near the critical value, the time-averaged extra dissipation scales as U, the displacement velocity. By decreasing the period of the pattern, we show the solid surface to be characterized by an effective contact angle whose value depends on the material characteristics and composition of the patterned surfaces.


2019 ◽  
Vol 540 ◽  
pp. 544-553
Author(s):  
C.A. Fuentes ◽  
M. Hatipogullari ◽  
S. Van Hoof ◽  
Y. Vitry ◽  
S. Dehaeck ◽  
...  

2016 ◽  
Vol 791 ◽  
pp. 519-538 ◽  
Author(s):  
Seok Hyun Hong ◽  
Marco A. Fontelos ◽  
Hyung Ju Hwang

We compute the equilibrium contact angles for an evaporating droplet whose contact line lies over a solid wedge. The stability of the liquid interface is also considered and an integro-differential equation for small perturbations is deduced. The analysis of this equation yields criteria for stability and instability of the contact line, where the instability represents transition from the pinned to unpinned contact line representative of stick–slip motion.


Soft Matter ◽  
2018 ◽  
Vol 14 (47) ◽  
pp. 9599-9608 ◽  
Author(s):  
Dong-Ook Kim ◽  
Min Pack ◽  
Arif Rokoni ◽  
Paul Kaneelil ◽  
Ying Sun

Contact line dynamics and deposition pattern of a colloidal drop are strong functions of the particle wettability.


2018 ◽  
Vol 841 ◽  
pp. 767-783 ◽  
Author(s):  
Yi Xia ◽  
Paul H. Steen

Contact-line mobility characterizes how fast a liquid can wet or unwet a solid support by relating the contact angle $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ to the contact-line speed $U_{CL}$. The contact angle changes dynamically with contact-line speeds during rapid movement of liquid across a solid. Speeds beyond the region of stick–slip are the focus of this experimental paper. For these speeds, liquid inertia and surface tension compete while damping is weak. The mobility parameter $M$ is defined empirically as the proportionality, when it exists, between $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ and $U_{CL}$, $M\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}=U_{CL}$. We discover that $M$ exists and measure it. The experimental approach is to drive the contact line of a sessile drop by a plane-normal oscillation of the drop’s support. Contact angles, displacements and speeds of the contact line are measured. To unmask the mobility away from stick–slip, the diagram of $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ against $U_{CL}$, the traditional diagram, is remapped to a new diagram by rescaling with displacement. This new diagram reveals a regime where $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FC}$ is proportional to $U_{CL}$ and the slope yields the mobility $M$. The experimental approach reported introduces the cyclically dynamic contact angle goniometer. The concept and method of the goniometer are illustrated with data mappings for water on a low-hysteresis non-wetting substrate.


2001 ◽  
Vol 11 (PR6) ◽  
pp. Pr6-199-Pr6-212 ◽  
Author(s):  
Y. Pomeau

Sign in / Sign up

Export Citation Format

Share Document