Computational Modeling of Membrane Viscosity of Red Blood Cells

2015 ◽  
Vol 17 (4) ◽  
pp. 1073-1087 ◽  
Author(s):  
John Gounley ◽  
Yan Peng

AbstractDespite its demonstrated importance in the deformation and dynamics of red blood cells, membrane viscosity has not received the same attention in computational models as elasticity and bending stiffness. Recent experiments on red blood cells indicated a power law response due to membrane viscosity. This is potentially much different from the solid viscoelastic models, such as Kelvin-Voigt and standard linear solid (SLS), currently used in computation to describe this aspect of the membrane. Within the context of a framework based on lattice Boltzmann and immersed boundary methods, we introduce SLS and power law models for membrane viscosity. We compare how the Kelvin-Voigt (as approximated by SLS) and power law models alter the deformation and dynamics of a spherical capsule in shear flows.

2018 ◽  
Vol 7 (2) ◽  
pp. 129-136
Author(s):  
N. A. Geydarov ◽  
K. S. Gainullova ◽  
O. S. Drygina

The review provides the current state and benefits of the computational fluid dynamics (CFD) applications in cardiovascular surgery. The review covers the milestones of CFD and novel achievements in the development of both numerical algorithms and computational models. Basic methods of flow modeling, including immersed-boundary methods and finite-difference methods, allow solving most core tasks, even using commercially available software packages. Future research prospects of CFD are associated with detailed modeling of the pathological processes affecting functional properties of medical devices, namely thrombus formation and embolism. However, current computational and mathematical systems are limited to address fully all these processes.


TAPPI Journal ◽  
2011 ◽  
Vol 11 (11) ◽  
pp. 23-30 ◽  
Author(s):  
ANDREAS MARK ◽  
ERIK SVENNING ◽  
ROBERT RUNDQVIST ◽  
FREDRIK EDELVIK ◽  
ERIK GLATT ◽  
...  

Paper forming is the first step in the paper machine where a fiber suspension leaves the headbox and flows through a forming fabric. Complex physical phenomena occur as the paper forms, during which fibers, fillers, fines, and chemicals added to the suspension interact. Understanding this process is important for the development of improved paper products because the configuration of the fibers during this step greatly influences the final paper quality. Because the effective paper properties depend on the microstructure of the fiber web, a continuum model is inadequate to explain the process and the properties of each fiber need to be accounted for in simulations. This study describes a new framework for microstructure simulation of early paper forming. The simulation framework includes a Navier-Stokes solver and immersed boundary methods to resolve the flow around the fibers. The fibers were modeled with a finite element discretization of the Euler-Bernoulli beam equation in a co-rotational formulation. The contact model is based on a penalty method and includes friction and elastic and inelastic collisions. We validated the fiber model and the contact model against demanding test cases from the literature, with excellent results. The fluid-structure interaction in the model was examined by simulating an elastic beam oscillating in a cross flow. We also simulated early paper formation to demonstrate the potential of the proposed framework.


2011 ◽  
Vol 69 (4) ◽  
pp. 842-858 ◽  
Author(s):  
Yibao Li ◽  
Eunok Jung ◽  
Wanho Lee ◽  
Hyun Geun Lee ◽  
Junseok Kim

2014 ◽  
Vol 270 ◽  
pp. 640-659 ◽  
Author(s):  
Mohammad Robiul Hossan ◽  
Robert Dillon ◽  
Prashanta Dutta

Sign in / Sign up

Export Citation Format

Share Document