Lattice Boltzmann Study of Flow and Temperature Structures ofNon-Isothermal Laminar Impinging Streams

2013 ◽  
Vol 13 (3) ◽  
pp. 835-850 ◽  
Author(s):  
Wenhuan Zhang ◽  
Zhenhua Chai ◽  
Zhaoli Guo ◽  
Baochang Shi

AbstractPrevious works on impinging streams mainly focused on the structures of flow field, but paid less attention to the structures of temperature field, which are very important in practical applications. In this paper, the influences of the Reynolds number (Re) and Prandtl number (Pr) on the structures of flow and temperature fields of non-isothermal laminar impinging streams are both studied numerically with the lattice Boltzmann method, and two cases with and without buoyancy effect are considered. Numerical results show that the structures are quite different in these cases. Moreover, in the case with buoyancy effect, some new deflection and periodic structures are found, and their independence on the outlet boundary condition is also verified. These findings may help to understand the flow and temperature structures of non-isothermal impinging streams further.

2011 ◽  
Vol 474-476 ◽  
pp. 422-427
Author(s):  
Hang Li ◽  
Yong Hong Liu ◽  
Ya Zhou Wang ◽  
Jian Ming Ma

In this paper, the lattice Boltzmann Method is applied to simulate incompressible steady flow around a cylinder. The simulation model is based on D2Q9 lattice model and Guo boundary condition. Different Reynolds number and cylinder position in the flow field is considered to acquire corresponding velocity, vorticity, pressure and kinetic energy. The conclusions demonstrated in this paper could be useful for the project like construction of ocean platform, cooling tower or high chimney and so on.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
J. Wu ◽  
C. Shu ◽  
N. Zhao

A hybrid immersed boundary-lattice Boltzmann method (IB-LBM) is presented in this work to simulate the thermal flow problems. In current approach, the flow field is resolved by using our recently developed boundary condition-enforced IB-LBM (Wu and Shu, (2009)). The nonslip boundary condition on the solid boundary is enforced in simulation. At the same time, to capture the temperature development, the conventional energy equation is resolved. To model the effect of immersed boundary on temperature field, the heat source term is introduced. Different from previous studies, the heat source term is set as unknown rather than predetermined. Inspired by the idea in (Wu and Shu, (2009)), the unknown is calculated in such a way that the temperature at the boundary interpolated from the corrected temperature field accurately satisfies the thermal boundary condition. In addition, based on the resolved temperature correction, an efficient way to compute the local and average Nusselt numbers is also proposed in this work. As compared with traditional implementation, no approximation for temperature gradients is required. To validate the present method, the numerical simulations of forced convection are carried out. The obtained results show good agreement with data in the literature.


Author(s):  
Joris C. G. Verschaeve

By means of the continuity equation of the incompressible Navier–Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.


2014 ◽  
Vol 554 ◽  
pp. 665-669
Author(s):  
Leila Jahanshaloo ◽  
Nor Azwadi Che Sidik

The Lattice Boltzmann Method (LBM) is a potent numerical technique based on kinetic theory, which has been effectively employed in various complicated physical, chemical and fluid mechanics problems. In this paper multi-relaxation lattice Boltzmann model (MRT) coupled with a Large Eddy Simulation (LES) and the equation are applied for driven cavity flow at different Reynolds number (1000-10000) and the results are compared with the previous published papers which solve the Navier stokes equation directly. The comparisons between the simulated results show that the lattice Boltzmann method has the capacity to solve the complex flows with reasonable accuracy and reliability. Keywords: Two-dimensional flows, Lattice Boltzmann method, Turbulent flow, MRT, LES.


Sign in / Sign up

Export Citation Format

Share Document