A Finite Element Method with Rectangular Perfectly Matched Layers for the Scattering from Cavities

2009 ◽  
Vol 27 (6) ◽  
pp. 812-834 ◽  
Author(s):  
Deyue Zhang
Acta Acustica ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 16
Author(s):  
Christophe Langlois ◽  
Jean-Daniel Chazot ◽  
Emmanuel Perrey-Debain ◽  
Benoit Nennig

The Partition of Unity Finite Element Method (PUFEM) is now a well established and efficient method used in computational acoustics to tackle short-wave problems. This method is an extension of the classical finite element method whereby enrichment functions are used in the approximation basis in order to enhance the convergence of the method whilst maintaining a relatively low number of degrees of freedom. For exterior problems, the computational domain must be artificially truncated and special treatments must be followed in order to avoid or reduce spurious reflections. In recent papers, different Non-Reflecting Boundary Conditions (NRBCs) have been used in conjunction with the PUFEM. An alternative is to use the Perfectly Match Layer (PML) concept which consists in adding a computational sponge layer which prevents reflections from the boundary. In contrast with other NRBCs, the PML is not case specific and can be applied to a variety of configurations. The aim of this work is to show the applicability of PML combined with PUFEM for solving the propagation of acoustic waves in unbounded media. Performances of the PUFEM-PML are shown for different configurations ranging from guided waves in ducts, radiation in free space and half-space problems. In all cases, the method is shown to provide acceptable results for most applications, similar to that of local approximation of NRBCs.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Aires Colaço ◽  
Pedro Alves Costa ◽  
Paulo Amado-Mendes ◽  
Luís Godinho

The growing of railway infrastructures in urban environments demands accurate methods to predict and mitigate potential annoyance of the inhabitants of the surrounding buildings. The present paper aims to contribute to the goal by proposing a numerical model to predict vibrations and reradiated noise due to railway traffic. The model is based on a substructuring approach, where the whole propagation media are considered, from the vibration source (the vehicle–track interaction) to the receiver (the building and its interior acoustic environment). The system track–ground–building is simulated by a 2.5D finite element method–perfectly matched layers (FEM–PML) model, formulated in the frequency-wavenumber domain. The reradiated noise assessment is based on a 2.5D FEM–method of fundamental solutions (MFS) model, where the FEM is used to obtain the structural dynamic response. The structural displacements computed are used as the vibration input for the MFS model in order to assess the acoustic response inside the building's compartments. An application example is presented to assess vibrations and reradiated noise levels inside the building due to railway traffic. This is then followed by a discussion about the potential benefits of the introduction of floating-slab-track systems.


Sign in / Sign up

Export Citation Format

Share Document