Green River Watershed Data used for Evaluating Ensemble Streamflow Forecasting with the Utah Energy Balance (UEB) Snowmelt Model Coupled to the Research Distributed Hydrologic Model (RDHM) with Snow and Streamflow Assimilation

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3505
Author(s):  
Bradley Carlberg ◽  
Kristie Franz ◽  
William Gallus

To account for spatial displacement errors common in quantitative precipitation forecasts (QPFs), a method using systematic shifting of QPF fields was tested to create ensemble streamflow forecasts. While previous studies addressed spatial displacement using neighborhood approaches, shifting of QPF accounts for those errors while maintaining the structure of predicted systems, a feature important in hydrologic forecasts. QPFs from the nine-member High-Resolution Rapid Refresh Ensemble were analyzed for 46 forecasts from 6 cases covering 17 basins within the National Weather Service North Central River Forecast Center forecasting region. Shifts of 55.5 and 111 km were made in the four cardinal and intermediate directions, increasing the ensemble size to 81 members. These members were input into a distributed hydrologic model to create an ensemble streamflow prediction. Overall, the ensemble using the shifted QPFs had an improved frequency of non-exceedance and probability of detection, and thus better predicted flood occurrence. However, false alarm ratio did not improve, likely because shifting multiple QPF ensembles increases the potential to place heavy precipitation in a basin where none actually occurred. A weighting scheme based on a climatology of displacements was tested, improving overall performance slightly compared to the approach using non-weighted members.


Sign in / Sign up

Export Citation Format

Share Document