BLUE WATER FARMS: A WORKING PARTNERSHIP TO REDUCE NUTRIENT LOSSES FROM AGRICULTURAL FIELDS, LOWER GREEN RIVER WATERSHED, KENTUCKY

2018 ◽  
Author(s):  
E. Glynn Beck ◽  
◽  
Mark J. Akland ◽  
Dwayne Edwards ◽  
Brad Lee
2015 ◽  
Vol 8 (1) ◽  
pp. 179
Author(s):  
Isabela Raquel Ramos Iensen ◽  
Gilson Bauer Schultz ◽  
Irani Dos Santos

Climate changes may generate significant impacts in the hydrological cycle. It is important to recognize modifications in green water (water stored in soil followed by the consumption of the vegetation) and blue water (water that flows into rivers, lakes, wetlands and shallow aquifers) availability in consequence of climate change modifications. The mathematical modelling is used to simulate the effect of climate change scenarios in hydrological processes in watersheds. This study aimed to evaluate the impacts of climate change in blue and green water in Apucaraninha River Watershed, Southern Brazil, considering the climate scenarios A2 and B2, pessimistic and optimistic, respectively, about greenhouse gases emissions developed by IPCC. SWAT was calibrated and validated using daily streamflow from 1987 to 2012. Climate scenarios A2 and B2 were used to simulate the hydrological conditions for the period 2071-2100. The model presented satisfactory fit compared to the observed data allowing the simulation of the current hydrological conditions, therefore permitting the simulation of future climate change impacts on green and blue water. We found that despite the increase in potential evapotranspiration of 19% and 12% for A2 and B2 scenario respectively, caused by the increase in temperature, the reduction in rainfall amount induced to a reduction in actual evapotranspiration, which correspond to green water, and a reduction of 1% for A2 scenario and 14% for B2 scenario in blue water availability.  


2015 ◽  
Vol 95 (4) ◽  
pp. 337-358 ◽  
Author(s):  
C. Gombault ◽  
C. A. Madramootoo ◽  
A. R. Michaud ◽  
I. Beaudin ◽  
M. F. Sottile ◽  
...  

Gombault, C., Madramootoo, C. A., Michaud, A. R., Beaudin, I., Sottile, M. F., Chikhaoui, M. and Ngwa, F. F. 2015. Impacts of climate change on nutrient losses from the Pike River watershed of southern Québec. Can. J. Soil Sci. 95: 337–358. The impacts of climate change on water quality in the Pike River watershed, an important contributor of nutrient loads into the northern arm of Lake Champlain, were simulated for the time horizon 2041–2070. Four water quality scenarios were simulated using a calibrated version of the Soil and Water Assessment Tool (SWAT) customized to Québec agroclimatic conditions. Three of the scenarios were generated using climate data simulated with the Fourth-generation Canadian Regional Climate Model (CRCM4). The fourth scenario was generated using the climate simulated with the Arpege Regional Climate Model. Potential mean climate-induced changes in sediment, phosphorus, and nitrogen yield projected by these scenarios were then analyzed for the 2050 horizon. In addition, the impacts of the different sources of climate projection uncertainty were assessed by comparing climate model initial conditions, and climate model physical structure effects on the hydrochemical projections. Only one climate scenario projected a significant increase in mean annual total phosphorus [10 metrics tons (t) yr−1 or 14%] and total nitrogen (260 t yr−1 or 17%) loads. However, when shorter time spans (seasonal and monthly scales) were considered, several significant changes were detected, especially in winter. Sediment and nutrient loadings, in winter, were predicted to become three to four times higher than current levels. These increases were attributed to a greater vulnerability of soils to erosion in winter due to the decrease in the snowpack, early onset of spring snowmelt, a greater number of rainfall events, and snowmelt episodes caused by higher winter and spring temperatures.


Sign in / Sign up

Export Citation Format

Share Document