Asymptotic method of differential inequalities and its applications in nonlinear wave theory

Author(s):  
Nikolai Nikolaevich Nefedov



Author(s):  
Anastasia L. Kryukova

There are many queuing systems that accept single arrivals, accumulate them and service only as a group. Examples of such systems exist in various areas of human life, from traffic of transport to processing requests on a computer network. Therefore, our study is actual. In this paper some class of finite Markovian queueing models with single arrivals and group services are studied. We considered the forward Kolmogorov system for corresponding class of Markov chains. The method of obtaining bounds of convergence on the rate via the notion of the logarithmic norm of a linear operator function is not applicable here. This approach gives sharp bounds for the situation of essentially non-negative matrix of the corresponding system, but in our case it does not hold. Here we use the method of differential inequalities to obtaining bounds on the rate of convergence to the limiting characteristics for the class of finite Markovian queueing models. We obtain bounds on the rate of convergence and compute the limiting characteristics for a specific non-stationary model too. Note the results can be successfully applied for modeling complex biological systems with possible single births and deaths of a group of particles.



2001 ◽  
Vol 3 (3) ◽  
pp. 84-87 ◽  
Author(s):  
Z H Tagiev ◽  
R J Kasumova ◽  
R A Salmanova ◽  
N V Kerimova




Author(s):  
Cuilin Li ◽  
Dingyong Yu ◽  
Yangyang Gao ◽  
Junxian Yang

Many empirical and theoretical distribution functions for wave crest heights have been proposed, but there is a lack of agreement. With the development of ocean exploitation, waves crest heights represent a key point in the design of coastal structures, both fixed and floating, for shoreline protection and flood prevention. Waves crest height is the dominant parameter in assessing the likelihood of wave-in-deck impact and its resulting severe damage. Unlike wave heights, wave crests generally appear to be affected by nonlinearities; therefore, linear wave theory could not be satisfied to practical application. It is great significant to estimate a new nonlinear wave crest height distribution model correctly. This paper derives an approximation distribution formula based on Stokes wave theory. The resulting theoretical forms for nonlinear wave crest are compared with observed data and discussed in detail. The results are shown to be in good agreement. Furthermore, the results indicate that the new theoretical distribution has more accurate than other methods presented in this paper (e.g. Rayleigh distribution and Weibull distribution) and appears to have a greater range of applicability.



Author(s):  
Vladimir N. Serkin ◽  
T.L. Belyaeva ◽  
G. H. Corro ◽  
L. Morales-Lara ◽  
R. Pe\~{n}a-Moreno ◽  
...  
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document