scholarly journals Closed-Form Expressions for Selection Combining System Statistics over Correlated Generalized-K Fading Channels in the Presence of Interference

ETRI Journal ◽  
2011 ◽  
Vol 33 (3) ◽  
pp. 320-325 ◽  
Author(s):  
Bojana Z. Nikolic
2021 ◽  
Author(s):  
Salam Al-Juboori ◽  
Xavier Fernando

Accurate detection of white spaces is crucial to protect primary user against interference with secondary user. Multipath fading and correlation among diversity branches represent essential challenges in Cognitive Radio Network Spectrum Sensing (CRNSS). This dissertation investigates the problem of correlation among multiple diversity receivers in wireless communications in the presence of multipath fading. The work of this dissertation falls into two folds, analysis and solution. In the analysis fold, this dissertation implements a unified approach of performance analysis for cognitive spectrum sensing. It considers a more realistic sensing scenario where non-independent multipath fading channels with diversity combining technique are assumed. Maximum Ratio Combining (MRC), Equal Gain Combining (EGC), Selection Combining (SC) and Selection and Stay Combining (SSC) techniques are employed. Arbitrarily, constant and exponentially dual, triple and L number of Nakagami-m correlated fading branches are investigated. We derive novel closed-form expressions for the average detection probability for each sensing scenario with simpler and more general alternative expressions. Our numerical analysis reveals the deterioration in detection probability due to correlation especially in deep fading. Consequently, an increase in the interference rate between the primary user and secondary user is observed by three times its rate when independent fading branches is assumed. However, results also show that this effect could be compensated for, through employing the appropriate diversity technique and by increasing the diversity branches. Therefore, we say that the correlation cannot be overlooked in deep fading, however in low fading can be ignored so as to reduce complexity and computation. Furthermore, at low fading, low false alarm probability and highly correlated environments, EGC which is simpler scheme performs as good as MRC which is a more complex scheme. Similar result are observed for SC and SSC. For the solution fold and towards combatting the correlation impact on the wireless systems, a decorrelator implementation at the receiver will be very beneficial. We propose such decorrelator scheme which would significantly alleviate the correlation effect. We derive closed-form expressions for the decorrelator receiver detection statistics including the Probability Density Function (PDF) from fundamental principles, considering dual antenna SC receiver in Nakagami-m fading channels. Numerical results show that the PDF of the bivariate difference could be perfectly represented by a semi-standard normal distribution with zero mean and constant variance depending on the bivariate's parameters. This observation would significantly help simplifying the design of decorrelator receiver. The derived statistics can be used in the problem of self-interference for multicarrier systems. Results also show the outage probability has been improved by double, due to the decorrelator.


2021 ◽  
Author(s):  
Salam Al-Juboori ◽  
Xavier Fernando

Accurate detection of white spaces is crucial to protect primary user against interference with secondary user. Multipath fading and correlation among diversity branches represent essential challenges in Cognitive Radio Network Spectrum Sensing (CRNSS). This dissertation investigates the problem of correlation among multiple diversity receivers in wireless communications in the presence of multipath fading. The work of this dissertation falls into two folds, analysis and solution. In the analysis fold, this dissertation implements a unified approach of performance analysis for cognitive spectrum sensing. It considers a more realistic sensing scenario where non-independent multipath fading channels with diversity combining technique are assumed. Maximum Ratio Combining (MRC), Equal Gain Combining (EGC), Selection Combining (SC) and Selection and Stay Combining (SSC) techniques are employed. Arbitrarily, constant and exponentially dual, triple and L number of Nakagami-m correlated fading branches are investigated. We derive novel closed-form expressions for the average detection probability for each sensing scenario with simpler and more general alternative expressions. Our numerical analysis reveals the deterioration in detection probability due to correlation especially in deep fading. Consequently, an increase in the interference rate between the primary user and secondary user is observed by three times its rate when independent fading branches is assumed. However, results also show that this effect could be compensated for, through employing the appropriate diversity technique and by increasing the diversity branches. Therefore, we say that the correlation cannot be overlooked in deep fading, however in low fading can be ignored so as to reduce complexity and computation. Furthermore, at low fading, low false alarm probability and highly correlated environments, EGC which is simpler scheme performs as good as MRC which is a more complex scheme. Similar result are observed for SC and SSC. For the solution fold and towards combatting the correlation impact on the wireless systems, a decorrelator implementation at the receiver will be very beneficial. We propose such decorrelator scheme which would significantly alleviate the correlation effect. We derive closed-form expressions for the decorrelator receiver detection statistics including the Probability Density Function (PDF) from fundamental principles, considering dual antenna SC receiver in Nakagami-m fading channels. Numerical results show that the PDF of the bivariate difference could be perfectly represented by a semi-standard normal distribution with zero mean and constant variance depending on the bivariate's parameters. This observation would significantly help simplifying the design of decorrelator receiver. The derived statistics can be used in the problem of self-interference for multicarrier systems. Results also show the outage probability has been improved by double, due to the decorrelator.


Author(s):  
Hasan Aldiabat ◽  
Ahmed Alhubaishi

Inspired by the low-difficulty of implementing a dual-branch selection combining (SC) technique, this research paper presents approximate closed form expressions for the bit error rate (BER) of M-ary phase shift keying (M-PSK) considering the SC technique. In particular, the BER expression is derived over independent and identically distributed (i.i.d) alpha - mu fading channels and is based on the use of Meijer’s G-function. The presented mathematical formulas can be modified to study the performance of different types of fading channels including Weibull, exponential, Nakagami-m, Gamma, and Rayleigh channels. This can be achieved by updating the parameters of the propagation medium nonlinearity (alpha) and the number of multipath clusters (mu). In addition, the paper provides numerical results that demonstrate a close match in the performance of the derived expressions and the simulation findings in terms of BER. Specifically, a very close to a total BER match is achieved using a range of signal to noise ratio (SNR) levels for various selections of the alpha and mu parameters. The obtained closed form BER expression of M-PSK considering the dual-branch SC technique is novel, new, and has never been published in the literature before.


2014 ◽  
Vol 519-520 ◽  
pp. 929-933 ◽  
Author(s):  
Zhe Ji ◽  
You Zheng Wang ◽  
Jian Hua Lu

In this paper, we study the effective capacity (EC) which was proposed to measure the quality of service (QoS) for fading channels. A unified expression for the effective capacity based on the method of moment generating function (MGF) is proposed. The unified expression applies to various fading channels and is derived for both single antenna and multiple antenna diversity system. The mathematical expression is illustrated with Nakagami-m fading channels and closed form expressions are derived in this case. The simulation results verify the consistence of the closed-form expressions with numerical evaluations.


Sign in / Sign up

Export Citation Format

Share Document