scholarly journals Multichannel spectrum sensing over correlated fading channels with diversity reception

2021 ◽  
Author(s):  
Salam Al-Juboori ◽  
Xavier Fernando

Accurate detection of white spaces is crucial to protect primary user against interference with secondary user. Multipath fading and correlation among diversity branches represent essential challenges in Cognitive Radio Network Spectrum Sensing (CRNSS). This dissertation investigates the problem of correlation among multiple diversity receivers in wireless communications in the presence of multipath fading. The work of this dissertation falls into two folds, analysis and solution. In the analysis fold, this dissertation implements a unified approach of performance analysis for cognitive spectrum sensing. It considers a more realistic sensing scenario where non-independent multipath fading channels with diversity combining technique are assumed. Maximum Ratio Combining (MRC), Equal Gain Combining (EGC), Selection Combining (SC) and Selection and Stay Combining (SSC) techniques are employed. Arbitrarily, constant and exponentially dual, triple and L number of Nakagami-m correlated fading branches are investigated. We derive novel closed-form expressions for the average detection probability for each sensing scenario with simpler and more general alternative expressions. Our numerical analysis reveals the deterioration in detection probability due to correlation especially in deep fading. Consequently, an increase in the interference rate between the primary user and secondary user is observed by three times its rate when independent fading branches is assumed. However, results also show that this effect could be compensated for, through employing the appropriate diversity technique and by increasing the diversity branches. Therefore, we say that the correlation cannot be overlooked in deep fading, however in low fading can be ignored so as to reduce complexity and computation. Furthermore, at low fading, low false alarm probability and highly correlated environments, EGC which is simpler scheme performs as good as MRC which is a more complex scheme. Similar result are observed for SC and SSC. For the solution fold and towards combatting the correlation impact on the wireless systems, a decorrelator implementation at the receiver will be very beneficial. We propose such decorrelator scheme which would significantly alleviate the correlation effect. We derive closed-form expressions for the decorrelator receiver detection statistics including the Probability Density Function (PDF) from fundamental principles, considering dual antenna SC receiver in Nakagami-m fading channels. Numerical results show that the PDF of the bivariate difference could be perfectly represented by a semi-standard normal distribution with zero mean and constant variance depending on the bivariate's parameters. This observation would significantly help simplifying the design of decorrelator receiver. The derived statistics can be used in the problem of self-interference for multicarrier systems. Results also show the outage probability has been improved by double, due to the decorrelator.

2021 ◽  
Author(s):  
Salam Al-Juboori ◽  
Xavier Fernando

Accurate detection of white spaces is crucial to protect primary user against interference with secondary user. Multipath fading and correlation among diversity branches represent essential challenges in Cognitive Radio Network Spectrum Sensing (CRNSS). This dissertation investigates the problem of correlation among multiple diversity receivers in wireless communications in the presence of multipath fading. The work of this dissertation falls into two folds, analysis and solution. In the analysis fold, this dissertation implements a unified approach of performance analysis for cognitive spectrum sensing. It considers a more realistic sensing scenario where non-independent multipath fading channels with diversity combining technique are assumed. Maximum Ratio Combining (MRC), Equal Gain Combining (EGC), Selection Combining (SC) and Selection and Stay Combining (SSC) techniques are employed. Arbitrarily, constant and exponentially dual, triple and L number of Nakagami-m correlated fading branches are investigated. We derive novel closed-form expressions for the average detection probability for each sensing scenario with simpler and more general alternative expressions. Our numerical analysis reveals the deterioration in detection probability due to correlation especially in deep fading. Consequently, an increase in the interference rate between the primary user and secondary user is observed by three times its rate when independent fading branches is assumed. However, results also show that this effect could be compensated for, through employing the appropriate diversity technique and by increasing the diversity branches. Therefore, we say that the correlation cannot be overlooked in deep fading, however in low fading can be ignored so as to reduce complexity and computation. Furthermore, at low fading, low false alarm probability and highly correlated environments, EGC which is simpler scheme performs as good as MRC which is a more complex scheme. Similar result are observed for SC and SSC. For the solution fold and towards combatting the correlation impact on the wireless systems, a decorrelator implementation at the receiver will be very beneficial. We propose such decorrelator scheme which would significantly alleviate the correlation effect. We derive closed-form expressions for the decorrelator receiver detection statistics including the Probability Density Function (PDF) from fundamental principles, considering dual antenna SC receiver in Nakagami-m fading channels. Numerical results show that the PDF of the bivariate difference could be perfectly represented by a semi-standard normal distribution with zero mean and constant variance depending on the bivariate's parameters. This observation would significantly help simplifying the design of decorrelator receiver. The derived statistics can be used in the problem of self-interference for multicarrier systems. Results also show the outage probability has been improved by double, due to the decorrelator.


2021 ◽  
Author(s):  
Salam Al-Juboori ◽  
Sattar J. Hussain ◽  
Xavier N. Fernando

Accurate detection of white spaces is crucial in cognitive radio networks. Initial investigations show that the accurate detection in a multiple primary users environment is challenging, especially under severe multipath conditions. Among many techniques, recently proposed eigenvalue-based detectors that use random matrix theories to eliminate the need of prior knowledge of the signals proved to be a solid approach. In this work, we study the effect of Rayleigh multipath fading channels on spectrum sensing in a multiple primary user environment for a pre-proposed detector called the spherical detector using the eigenvalue approach. Simulation results show interesting outcomes.


2021 ◽  
Author(s):  
Salam Al-Juboori ◽  
Sattar J. Hussain ◽  
Xavier N. Fernando

Accurate detection of white spaces is crucial in cognitive radio networks. Initial investigations show that the accurate detection in a multiple primary users environment is challenging, especially under severe multipath conditions. Among many techniques, recently proposed eigenvalue-based detectors that use random matrix theories to eliminate the need of prior knowledge of the signals proved to be a solid approach. In this work, we study the effect of Rayleigh multipath fading channels on spectrum sensing in a multiple primary user environment for a pre-proposed detector called the spherical detector using the eigenvalue approach. Simulation results show interesting outcomes.


2021 ◽  
Vol 22 (2) ◽  
pp. 161-167
Author(s):  
Chilakala Sudhamani

In cognitive radio networks spectrum sensing plays a vital role to identify the presence or absence of the primary user. In conventional spectrum sensing one secondary user will make a final decision regarding the availability of licensed spectrum. But Secondary user fail to make a correct detection about the presence of the primary user if he is in fading environment and it causes interference to the licensed users. Therefore to avoid interference to the licensed users and to make correct detection, number of samples is increased, Which increases the probability of detection. In this paper the optimization of samples is proposed to reduce the system overhead and also to increase the propagation time. Simulation results show the optimized value of samples for a given probability of false alarm and also the variation of probability of detection with optimized samples and false alarm is shown in the results. ABSTRAK: Dalam rangkaian radio kognitif, penginderaan spektrum memainkan peranan penting untuk mengenal pasti kehadiran atau ketiadaan pengguna utama. Dalam penginderaan spektrum konvensional, seorang pengguna sekunder akan membuat keputusan akhir mengenai ketersediaan spektrum berlesen. Tetapi pengguna Sekunder gagal membuat pengesanan yang betul mengenai kehadiran pengguna utama jika dia berada dalam persekitaran yang pudar dan menyebabkan gangguan kepada pengguna yang berlesen. Oleh itu untuk mengelakkan gangguan kepada pengguna berlesen dan membuat pengesanan yang betul, jumlah sampel meningkat, yang meningkatkan kemungkinan pengesanan. Dalam makalah ini pengoptimuman sampel dicadangkan untuk mengurangi overhead sistem dan juga untuk meningkatkan waktu penyebaran. Hasil simulasi menunjukkan nilai sampel yang dioptimumkan untuk kebarangkalian penggera palsu dan juga variasi kebarangkalian pengesanan dengan sampel yang dioptimumkan dan penggera palsu ditunjukkan dalam hasil.


2021 ◽  
Vol 1 (3) ◽  
pp. 8-14
Author(s):  
Sk Shariful Alam* ◽  
◽  
Shishir Mallick ◽  
Al-Zadid Sultan Bin Habib ◽  
◽  
...  

Radio spectrum is a primary requisite for wireless technologies and sensor networks. Due to the high demand and expense of the radio spectrum, it is guaranteed to extend its efficient utilization it. To expand the effective operation and serviceability of the radio spectrum in wireless communications, the notion of Cognitive Radio (CR) is presented in where the licensed spectrum of Primary User (PU) is used opportunistically by unlicensed CR users without interfering with the prioritized PU data transmission. Usually, a CR system is applied to detect empty radio bands by exploiting well-known spectrum sensing schemes and then unused spectrum is opportunistically used by the CR system. Various channels fading of the radio environment are to be considered while introducing different spectrum sensing approaches. In this regard, sensing time to find a vacant radio spectrum should be maintained minimum to reliably get the desired throughput. In this paper, an agreement issue is addressed between the time required for effective spectrum sensing and the achievable throughput of the CR network. Our proposed model illustrates the achievable throughput of CR node in cooperation provides better performance than stand-alone CR node. This is achieved by addressing the variation of the number of nodes under the Nakagami fading distribution. In conclusion, the maximum throughputs of the cooperative CR nodes are guaranteed as per simulation and data analysis.


Author(s):  
Jaskaran Singh Phull ◽  
Narwant Singh Grewal ◽  
Simar Preet Singh ◽  
Asha Rani

Wireless communication is being used in all communication standards. However, with each passing day, the bandwidth scarcity has become a significant concern for the upcoming wireless technologies. In order to address this concern, various techniques based on artificial intelligence have been designed. The basic intelligent radio called cognitive radio, has been devised. It works on the basic principle of spectrum sensing and detecting the free frequency for transmission of the secondary user, who is an unlicensed user. This work proposes an efficient technique that has been developed to design cognitive radio based on SDR platform. The frequency updating algorithm has been added for the performance assessment of the proposed technique. The analysis posits that for every 10dB rise in Gaussian Noise, the bit error rate of secondary transmitter and spectrum sensor, cause an increment of 19.59% and 29.39% respectively. It has been found that spectrum sensor is more prone to noise and that the Gaussian noise degrades the performance of the system. Therefore, it is pertinent that the spectrum sensor should be programmed carefully. This analysis, shows that the best range of spectrum sensor under Gaussian noise is 0 to 0.1dB. and the bit error rate is within this specified range. Background: Used the GNU radio companion software on software defined radio platform. Objective: To design the primary user and secondary user using GNU radio and to design an algorithm to update the frequency. Methods: Designing both the transmitter and receiver in different laptops using GRC. Python code for updating algorithm is written at the back end. Results: Performance is increased in making the intelligent in bit error rate as well as the transmission rate. Conclusion: Various parameters measured for cognitive radio which makes it more efficient in spectrum sensing.


Sign in / Sign up

Export Citation Format

Share Document