scholarly journals Global Existence of Classical Solutions to a Cancer Invasion Model

2012 ◽  
Vol 03 (04) ◽  
pp. 382-388 ◽  
Author(s):  
Khadijeh Baghaei ◽  
Mohammad Bagher Ghaemi ◽  
Mahmoud Hesaaraki



2020 ◽  
Vol 26 ◽  
pp. 121
Author(s):  
Dongbing Zha ◽  
Weimin Peng

For the Cauchy problem of nonlinear elastic wave equations for 3D isotropic, homogeneous and hyperelastic materials with null conditions, global existence of classical solutions with small initial data was proved in R. Agemi (Invent. Math. 142 (2000) 225–250) and T. C. Sideris (Ann. Math. 151 (2000) 849–874) independently. In this paper, we will give some remarks and an alternative proof for it. First, we give the explicit variational structure of nonlinear elastic waves. Thus we can identify whether materials satisfy the null condition by checking the stored energy function directly. Furthermore, by some careful analyses on the nonlinear structure, we show that the Helmholtz projection, which is usually considered to be ill-suited for nonlinear analysis, can be in fact used to show the global existence result. We also improve the amount of Sobolev regularity of initial data, which seems optimal in the framework of classical solutions.





2021 ◽  
pp. 110677
Author(s):  
Linnea C. Franssen ◽  
Nikolaos Sfakianakis ◽  
Mark A.J. Chaplain


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Pierre Roux ◽  
Delphine Salort

<p style='text-indent:20px;'>The Nonlinear Noisy Leaky Integrate and Fire (NNLIF) model is widely used to describe the dynamics of neural networks after a diffusive approximation of the mean-field limit of a stochastic differential equation. In previous works, many qualitative results were obtained: global existence in the inhibitory case, finite-time blow-up in the excitatory case, convergence towards stationary states in the weak connectivity regime. In this article, we refine some of these results in order to foster the understanding of the model. We prove with deterministic tools that blow-up is systematic in highly connected excitatory networks. Then, we show that a relatively weak control on the firing rate suffices to obtain global-in-time existence of classical solutions.</p>



2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jincheng Shi ◽  
Shengzhong Xiao

We are concerned with the global existence of classical solutions for a general model of viscosity long-short wave equations. Under suitable initial conditions, the existence of the global classical solutions for the viscosity long-short wave equations is proved. If it does not exist globally, the life span which is the largest time where the solutions exist is also obtained.



2016 ◽  
Vol 09 (01) ◽  
pp. 1650004
Author(s):  
Khadijeh Baghaei ◽  
Mahmoud Hesaaraki

In this paper, we study the mathematical model proposed by Owen and Sherratt in 1997. We prove that the classical solutions to this model are uniformly-in-time bounded.



2019 ◽  
Vol 16 (02) ◽  
pp. 223-243
Author(s):  
De-Xing Kong ◽  
Qi Liu ◽  
Chang-Ming Song

We investigate a dissipative hyperbolic geometry flow in two space variables for which a new nonlinear wave equation is derived. Based on an energy method, the global existence of solutions to the dissipative hyperbolic geometry flow is established. Furthermore, the scalar curvature of the metric remains uniformly bounded. Moreover, under suitable assumptions, we establish the global existence of classical solutions to the Cauchy problem, and we show that the solution and its derivative decay to zero as the time tends to infinity. In addition, the scalar curvature of the solution metric converges to the one of the flat metric at an algebraic rate.



Sign in / Sign up

Export Citation Format

Share Document