scholarly journals A novel 3D atomistic-continuum cancer invasion model: in silico simulations of an in vitro organotypic invasion assay

2021 ◽  
pp. 110677
Author(s):  
Linnea C. Franssen ◽  
Nikolaos Sfakianakis ◽  
Mark A.J. Chaplain
2011 ◽  
Vol 227 (2) ◽  
pp. 431-438 ◽  
Author(s):  
Yoonseok Kam ◽  
Katarzyna A. Rejniak ◽  
Alexander R.A. Anderson

2020 ◽  
Vol 167 (4) ◽  
pp. 347-355 ◽  
Author(s):  
Tomoaki Nagai ◽  
Tomohiro Ishikawa ◽  
Yasuhiro Minami ◽  
Michiru Nishita

Abstract Much attention has been paid on the mechanism of cancer invasion from the viewpoint of the behaviour of individual cancer cells. On the other hand, histopathological analyses of specimens from cancer patients and of cancer invasion model animals have revealed that cancer cells often exhibit collective invasion, characterized by sustained cell-to-cell adhesion and polarized invasion as cell clusters. Interestingly, it has recently become evident that during collective invasion of cancer cells, the cells localized at invasion front (leader cells) and the cells following them (follower cells) exhibit distinct cellular characteristics, and that there exist the cells expressing representative proteins related to both epithelial and mesenchymal properties simultaneously, designated as hybrid epithelial-to-mesenchymal transition (EMT)-induced cells, in cancer tissue. Furthermore, the findings that cells adopted in hybrid EMT state form clusters and show collective invasion in vitro emphasize an importance of hybrid EMT-induced cells in collective cancer invasion. In this article, we overview recent findings of the mechanism underlying collective invasion of cancer cells and discuss the possibility of controlling cancer invasion and metastasis by targeting this process.


2001 ◽  
Vol 84 (4) ◽  
pp. 558-564 ◽  
Author(s):  
C Fujiyama ◽  
A Jones ◽  
S Fuggle ◽  
R Bicknell ◽  
D Cranston ◽  
...  

Author(s):  
Linnea C. Franssen ◽  
Nikolaos Sfakianakis ◽  
Mark A.J. Chaplain

AbstractWe develop a three-dimensional genuinely hybrid atomistic-continuum model that describes the invasive growth dynamics of individual cancer cells in tissue. The framework explicitly accounts for phenotypic variation by distinguishing between cancer cells of an epithelial-like and a mesenchymal-like phenotype. It also describes mutations between these cell phenotypes in the form of epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET). The model consists of a hybrid system of partial and stochastic differential equations that describe the evolution of epithelial-like and mesenchymal-like cancer cells, respectively, under the consideration of matrix-degrading enzyme concentrations and the extracellular matrix density. With the help of inverse parameter estimation and a sensitivity analysis, this three-dimensional model is then calibrated to an in vitro organotypic invasion assay experiment of oral squamous cell carcinoma cells.


Fractals ◽  
2001 ◽  
Vol 09 (01) ◽  
pp. 61-76 ◽  
Author(s):  
H. AHAMMER ◽  
T. T. J. DEVANEY ◽  
H. A. TRITTHART

A long-established investigation method for in vitro cancer invasion using cancer cell spheroid and normal cell spheroid confrontation for the quantitative determination of invasion was expanded to make use of fractal methods. The box-counting method, the sausage method and a local method were used in comparison with image pre-processing steps such as median filtering, closing and opening, or hole filling and scrapping, and artificially added noise images. It was possible to examine the potential role of the fractal capacity dimension for this invasion model. Several aspects such as the absolute value and variance of the different methods were taken into account and compared to well established quantitative parameters. The fractal approach led to very promising results which improved the determination and examination of the invasion process of cancer.


1997 ◽  
Vol 78 (02) ◽  
pp. 880-886 ◽  
Author(s):  
Monique J Wijnberg ◽  
Paul H A Quax ◽  
Nancy M E Nieuwenbroek ◽  
Jan H Verheijen

SummaryThe plasminogen activation system is thought to be important in cell migration processes. A role for this system during smooth muscle cell migration after vascular injury has been suggested from several animal studies. However, not much is known about its involvement in human vascular remodelling. We studied the involvement of the plasminogen activation system in human smooth muscle cell migration in more detail using an in vitro wound assay and a matrix invasion assay. Inhibition of plasmin activity or inhibition of urokinase-type plasminogen activator (u-PA) activity resulted in approximately 40% reduction of migration after 24 h in the wound assay and an even stronger reduction (70-80%) in the matrix invasion assay. Migration of smooth muscle cells in the presence of inhibitory antibodies against tissue-type plasminogen activator (t-PA) was not significantly reduced after 24 h, but after 48 h a 30% reduction of migration was observed, whereas in the matrix invasion assay a 50% reduction in invasion was observed already after 24 h. Prevention of the interaction of u-PA with cell surface receptors by addition of soluble u-PA receptor or α2-macroglobulin receptor associated protein (RAP) to the culture medium, resulted in a similar inhibition of migration and invasion. From these results it can be concluded that both u-PA and t-PA mediated plasminogen activation can contribute to in vitro human smooth muscle cell migration and invasion. Furthermore, the interaction between u-PA and its cell surface receptor appears also to be involved in this migration and invasion process. The inhibitory effects on migration and invasion by the addition of RAP suggests an involvement of a RAP sensitive receptor of the LDL receptor family, possibly the LDL-receptor related protein (LRP) and/or the VLDL receptor.


Author(s):  
Markus Boel ◽  
Oscar J. Abilez ◽  
Ahmed N Assar ◽  
Christopher K. Zarins ◽  
Ellen Kuhl

Author(s):  
Jaynthy C. ◽  
N. Premjanu ◽  
Abhinav Srivastava

Cancer is a major disease with millions of patients diagnosed each year with high mortality around the world. Various studies are still going on to study the further mechanisms and pathways of the cancer cell proliferation. Fucosylation is one of the most important oligosaccharide modifications involved in cancer and inflammation. In cancer development increased core fucosylation by FUT8 play an important role in cell proliferation. Down regulation of FUT8 expression may help cure lung cancer. Therefore the computational study based on the down regulation mechanism of FUT8 was mechanised. Sapota fruit extract, containing 4-Ogalloylchlorogenic acid was used as the inhibitor against FUT-8 as target and docking was performed using in-silico tool, Accelrys Discovery Studio. There were several conformations of the docked result, and conformation 1 showed 80% dock score between the ligand and the target. Further the amino acids of the inhibitor involved in docking were studied using another tool, Ligplot. Thus, in-silico analysis based on drug designing parameters shows that the fruit extract can be studied further using in-vitro techniques to know its pharmacokinetics.


2019 ◽  
Author(s):  
Filip Fratev ◽  
Denisse A. Gutierrez ◽  
Renato J. Aguilera ◽  
suman sirimulla

AKT1 is emerging as a useful target for treating cancer. Herein, we discovered a new set of ligands that inhibit the AKT1, as shown by in vitro binding and cell line studies, using a newly designed virtual screening protocol that combines structure-based pharmacophore and docking screens. Taking together with the biological data, the combination of structure based pharamcophore and docking methods demonstrated reasonable success rate in identifying new inhibitors (60-70%) proving the success of aforementioned approach. A detail analysis of the ligand-protein interactions was performed explaining observed activities.<br>


Sign in / Sign up

Export Citation Format

Share Document