scholarly journals Load Flow Analysis Framework for Active Distribution Networks Based on Smart Meter Reading System

Engineering ◽  
2013 ◽  
Vol 05 (10) ◽  
pp. 1-8 ◽  
Author(s):  
Merkebu Zenebe Degefa ◽  
Robert John Millar ◽  
Matti Koivisto ◽  
Muhammad Humayun ◽  
Matti Lehtonen
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Haizhu Yang ◽  
Xiangyang Liu ◽  
Yiming Guo ◽  
Peng Zhang

Aiming at the problem of fault location in distribution networks with distributed energy resources (DERs), a fault location method based on the concepts of minimum fault reactance and golden section is proposed in this paper. Considering the influence of distributed energy resource supply on fault point current in distribution networks, an improved trapezoidal iteration method is proposed for load flow analysis and fault current calculation. This method only needs to measure the synchronous current of the distributed energy resource and does not need to measure the voltage information. Therefore, the investment in equipment is reduced. Validation is made using the IEEE 34-node test feeder. The simulation results show that the method is suitable for fault location of distribution networks with multiple distributed generators. This method can accurately locate the faults of the active distribution network under different conditions.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4234 ◽  
Author(s):  
Zhou ◽  
Yang ◽  
Yang ◽  
Yang ◽  
Littler ◽  
...  

Probabilistic Load Flow (PLF) calculations are important tools for analysis of the steady-state operation of electrical energy networks, especially for electrical energy distribution networks with large-scale distributed generators (DGs) and electric vehicle (EV) integration. Traditional PLF has used the Cumulant Method (CM) and Latin Hypercube Sampling (LHS) method. However, traditional CM requires that each input variable be independent of one another, and the Cholesky decomposition adopted by the traditional LHS has limitations in that it is only applicable for positive definite matrices. To solve these problems, taking into account the Q-MCS theory of LHS, this paper proposes a CM PLF algorithm based on improved LHS (ILHS-CM). The cumulants of the input variables are obtained based on sampling results. The probability distribution of the output variables is obtained according to the Gram-Charlier series expansion. Moreover, DGs, such as wind turbines, photovoltaic (PV) arrays, and EVs integrated into the electrical energy distribution networks are comprehensively considered, including correlation analysis and dynamic load flow analysis for EV-coordinated charging. Four scenarios are analyzed based on the IEEE-30 node network, including with/without DGs and EVs, error analysis and performance evaluation of the proposed algorithm, correlation analysis of DGs and EVs, and dynamic load flow analysis with EV integration. The results presented in this paper demonstrate the effectiveness, accuracy, and practicability of the proposed algorithm.


The Distributed generation and fast operating power electronic devices are attracting more attention due to their effective solution for improvement in the voltage profile, to meet the increasing power consumption, reduction in the power loss, enhancement in the power transfer capacity of the transmission lines, reducing the overloading of the entire network. The optimal placement of DG and FACTs devices plays key role in improvement of the network reliability and voltage stability. In this paper exhaustive load flow analysis is carried out for optimal placement of DG and UPFC. The proposed method is tested on 40 bus distribution network. The obtained results are satisfactory in terms of improvement in the overall performance of the distribution network.


Author(s):  
Tebbakh Noureddine ◽  
Labed Djamel

<p>Distributed generations (DG), specially including renewable sources such as wind and sun are offering several opportunities for the currently in existence distribution networks and becoming one of the keys of treatment of its problems. Knowing the effects of each kind of DG on distribution networks is a primordial task because DG impacts differ from one kind to another. In this paper, we have analyzed and compared the effects of two kinds of DG, DG which provides real power only and DG which provides real power and reactive power at the same time connected at the critical bus in DN on the voltage profile, real and reactive power losses. We have proposed Newton Raphson method using Matlab to investigate the impacts of these two kinds of DG on 57-bus IEEE distribution test system. The obtained results have been exposed in detail at the end of this paper.</p>


Sign in / Sign up

Export Citation Format

Share Document