scholarly journals Adaptive Optimization Swarm Algorithm Ensemble Model Applied to the Classification of Unbalanced Data

2021 ◽  
Vol 13 (05) ◽  
pp. 251-267
Author(s):  
Qingqing He ◽  
Chao Qin
2021 ◽  
Vol 21 (S2) ◽  
Author(s):  
Kun Zeng ◽  
Yibin Xu ◽  
Ge Lin ◽  
Likeng Liang ◽  
Tianyong Hao

Abstract Background Eligibility criteria are the primary strategy for screening the target participants of a clinical trial. Automated classification of clinical trial eligibility criteria text by using machine learning methods improves recruitment efficiency to reduce the cost of clinical research. However, existing methods suffer from poor classification performance due to the complexity and imbalance of eligibility criteria text data. Methods An ensemble learning-based model with metric learning is proposed for eligibility criteria classification. The model integrates a set of pre-trained models including Bidirectional Encoder Representations from Transformers (BERT), A Robustly Optimized BERT Pretraining Approach (RoBERTa), XLNet, Pre-training Text Encoders as Discriminators Rather Than Generators (ELECTRA), and Enhanced Representation through Knowledge Integration (ERNIE). Focal Loss is used as a loss function to address the data imbalance problem. Metric learning is employed to train the embedding of each base model for feature distinguish. Soft Voting is applied to achieve final classification of the ensemble model. The dataset is from the standard evaluation task 3 of 5th China Health Information Processing Conference containing 38,341 eligibility criteria text in 44 categories. Results Our ensemble method had an accuracy of 0.8497, a precision of 0.8229, and a recall of 0.8216 on the dataset. The macro F1-score was 0.8169, outperforming state-of-the-art baseline methods by 0.84% improvement on average. In addition, the performance improvement had a p-value of 2.152e-07 with a standard t-test, indicating that our model achieved a significant improvement. Conclusions A model for classifying eligibility criteria text of clinical trials based on multi-model ensemble learning and metric learning was proposed. The experiments demonstrated that the classification performance was improved by our ensemble model significantly. In addition, metric learning was able to improve word embedding representation and the focal loss reduced the impact of data imbalance to model performance.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2502
Author(s):  
Natalia Vanetik ◽  
Marina Litvak

Definitions are extremely important for efficient learning of new materials. In particular, mathematical definitions are necessary for understanding mathematics-related areas. Automated extraction of definitions could be very useful for automated indexing educational materials, building taxonomies of relevant concepts, and more. For definitions that are contained within a single sentence, this problem can be viewed as a binary classification of sentences into definitions and non-definitions. In this paper, we focus on automatic detection of one-sentence definitions in mathematical and general texts. We experiment with different classification models arranged in an ensemble and applied to a sentence representation containing syntactic and semantic information, to classify sentences. Our ensemble model is applied to the data adjusted with oversampling. Our experiments demonstrate the superiority of our approach over state-of-the-art methods in both general and mathematical domains.


Sign in / Sign up

Export Citation Format

Share Document