scholarly journals Semi-Supervised Dimensionality Reduction of Hyperspectral Image Based on Sparse Multi-Manifold Learning

2015 ◽  
Vol 03 (11) ◽  
pp. 33-39 ◽  
Author(s):  
Hong Huang ◽  
Fulin Luo ◽  
Zezhong Ma ◽  
Hailiang Feng
Author(s):  
Yiting Wang ◽  
Shiqi Huang ◽  
Hongxia Wang ◽  
Daizhi Liu ◽  
Zhigang Liu

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Chuanlei Zhang ◽  
Shanwen Zhang ◽  
Weidong Fang

Manifold learning based dimensionality reduction algorithms have been payed much attention in plant leaf recognition as the algorithms can select a subset of effective and efficient discriminative features in the leaf images. In this paper, a dimensionality reduction method based on local discriminative tangent space alignment (LDTSA) is introduced for plant leaf recognition based on leaf images. The proposed method can embrace part optimization and whole alignment and encapsulate the geometric and discriminative information into a local patch. The experiments on two plant leaf databases, ICL and Swedish plant leaf datasets, demonstrate the effectiveness and feasibility of the proposed method.


Author(s):  
V. H. Ayma ◽  
V. A. Ayma ◽  
J. Gutierrez

Abstract. Nowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the subsequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classification tasks. Existing approaches address the data representation problem by performing a dimensionality reduction over the original data. However, mining complementary features that reduce the redundancy from the multiple levels of hyperspectral images remains challenging. Thus, exploiting the representation power of neural networks based techniques becomes an attractive alternative in this matter. In this work, we propose a novel dimensionality reduction implementation for hyperspectral imaging based on autoencoders, ensuring the orthogonality among features to reduce the redundancy in hyperspectral data. The experiments conducted on the Pavia University, the Kennedy Space Center, and Botswana hyperspectral datasets evidence such representation power of our approach, leading to better classification performances compared to traditional hyperspectral dimensionality reduction algorithms.


Sign in / Sign up

Export Citation Format

Share Document