scholarly journals Speaker Verification Based on Log-Likelihood Score Normalization

2020 ◽  
Vol 08 (11) ◽  
pp. 80-87
Author(s):  
Wei Cao ◽  
Chunyan Liang ◽  
Shuxin Cao
2007 ◽  
Vol 28 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Daniel Ramos-Castro ◽  
Julian Fierrez-Aguilar ◽  
Joaquin Gonzalez-Rodriguez ◽  
Javier Ortega-Garcia

2021 ◽  
Author(s):  
Alexander Wong ◽  
Jack Lu ◽  
Adam Dorfman ◽  
Paul McInnis ◽  
Mahmoud Famouri ◽  
...  

Abstract Background: Pulmonary fibrosis is a devastating chronic lung disease that causes irreparable lung tissue scarring and damage, resulting in progressive loss in lung capacity and has no known cure. A critical step in the treatment and management of pulmonary fibrosis is the assessment of lung function decline, with computed tomography (CT) imaging being a particularly effective method for determining the extent of lung damage caused by pulmonary fibrosis. Motivated by this, we introduce Fibrosis-Net, a deep convolutional neural network design tailored for the prediction of pulmonary fibrosis progression from chest CT images. More specifically, machine-driven design exploration was leveraged to determine a strong architectural design for CT lung analysis, upon which we build a customized network design tailored for predicting forced vital capacity (FVC) based on a patient's CT scan, initial spirometry measurement, and clinical metadata. Finally, we leverage an explainability-driven performance validation strategy to study the decision-making behaviour of Fibrosis-Net as to verify that predictions are based on relevant visual indicators in CT images.Results: Experiments using a patient cohort from the OSIC Pulmonary Fibrosis Progression Challenge showed that the proposed Fibrosis-Net is able to achieve a significantly higher modified Laplace Log Likelihood score than the winning solutions on the challenge. Furthermore, explainability-driven performance validation demonstrated that the proposed Fibrosis-Net exhibits correct decision-making behaviour by leveraging clinically-relevant visual indicators in CT images when making predictions on pulmonary fibrosis progress. Conclusion: Fibrosis-Net is able to achieve a significantly higher modified Laplace Log Likelihood score than the winning solutions on the OSIC Pulmonary Fibrosis Progression Challenge, and has been shown to exhibit correct decision-making behaviour when making predictions. Fibrosis-Net is available to the general public in an open-source and open access manner as part of the OpenMedAI initiative. While Fibrosis-Net is not yet a production-ready clinical assessment solution, we hope that its release will encourage researchers, clinicians, and citizen data scientists alike to leverage and build upon it.


Author(s):  
Shuming Ma ◽  
Lei Cui ◽  
Damai Dai ◽  
Furu Wei ◽  
Xu Sun

We introduce the task of automatic live commenting. Live commenting, which is also called “video barrage”, is an emerging feature on online video sites that allows real-time comments from viewers to fly across the screen like bullets or roll at the right side of the screen. The live comments are a mixture of opinions for the video and the chit chats with other comments. Automatic live commenting requires AI agents to comprehend the videos and interact with human viewers who also make the comments, so it is a good testbed of an AI agent’s ability to deal with both dynamic vision and language. In this work, we construct a large-scale live comment dataset with 2,361 videos and 895,929 live comments. Then, we introduce two neural models to generate live comments based on the visual and textual contexts, which achieve better performance than previous neural baselines such as the sequence-to-sequence model. Finally, we provide a retrieval-based evaluation protocol for automatic live commenting where the model is asked to sort a set of candidate comments based on the log-likelihood score, and evaluated on metrics such as mean-reciprocal-rank. Putting it all together, we demonstrate the first “LiveBot”. The datasets and the codes can be found at https://github.com/lancopku/livebot.


2021 ◽  
Author(s):  
Xing-Xing Shen ◽  
Jacob L Steenwyk ◽  
Antonis Rokas

Abstract Topological conflict or incongruence is widespread in phylogenomic data. Concatenation- and coalescent-based approaches often result in incongruent topologies, but the causes of this conflict can be difficult to characterize. We examined incongruence stemming from conflict between likelihood-based signal (quantified by the difference in gene-wise log likelihood score or ΔGLS) and quartet-based topological signal (quantified by the difference in gene-wise quartet score or ΔGQS) for every gene in three phylogenomic studies in animals, fungi, and plants, which were chosen because their concatenation-based IQ-TREE (T1) and quartet-based ASTRAL (T2) phylogenies are known to produce eight conflicting internal branches (bipartitions). By comparing the types of phylogenetic signal for all genes in these three data matrices, we found that 30% - 36% of genes in each data matrix are inconsistent, that is, each of these genes has higher log likelihood score for T1 versus T2 (i.e., ΔGLS >0) whereas its T1 topology has lower quartet score than its T2 topology (i.e., ΔGQS <0) or vice versa. Comparison of inconsistent and consistent genes using a variety of metrics (e.g., evolutionary rate, gene tree topology, distribution of branch lengths, hidden paralogy, and gene tree discordance) showed that inconsistent genes are more likely to recover neither T1 nor T2 and have higher levels of gene tree discordance than consistent genes. Simulation analyses demonstrate that removal of inconsistent genes from datasets with low levels of incomplete lineage sorting (ILS) and low and medium levels of gene tree estimation error (GTEE) reduced incongruence and increased accuracy. In contrast, removal of inconsistent genes from datasets with medium and high ILS levels and high GTEE levels eliminated or extensively reduced incongruence, but the resulting congruent species phylogenies were not always topologically identical to the true species trees.


Sign in / Sign up

Export Citation Format

Share Document