scholarly journals Low-Speed Aerodynamic Characteristics of Supercritical Airfoil with Small High-Lift Devices from Flow Pattern Measurements

2020 ◽  
Vol 08 (04) ◽  
pp. 159-172
Author(s):  
Thai Duong Nguyen ◽  
Masashi Kashitani ◽  
Masato Taguchi
1974 ◽  
Author(s):  
Kenneth R. Sivier ◽  
Allen I. Ormsbee ◽  
Randal W. Awker

2022 ◽  
Author(s):  
Masashi Kashitani ◽  
Nguyen T. Duong ◽  
Masato Taguchi ◽  
Kazuhiro Kusunose

2015 ◽  
Vol 46 (7) ◽  
pp. 619-629
Author(s):  
Albert Vasilievich Petrov ◽  
Vladimir Fedorovich Tretyakov

Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Roberto Pacciani ◽  
Andrea Arnone ◽  
Francesco Bertini

Low pressure turbine airfoils of the present generation usually operate at subsonic conditions, with exit Mach numbers of about 0.6. To reduce the costs of experimental programs it can be convenient to carry out measurements in low speed tunnels in order to determine the cascades performance. Generally speaking, low speed tests are usually carried out on airfoils with modified shape, in order to compensate for the effects of compressibility. A scaling procedure for high-lift, low pressure turbine airfoils to be studied in low speed conditions is presented and discussed. The proposed procedure is based on the matching of a prescribed blade load distribution between the low speed airfoil and the actual one. Such a requirement is fulfilled via an Artificial Neural Network (ANN) methodology and a detailed parameterization of the airfoil. A RANS solver is used to guide the redesign process. The comparison between high and low speed profiles is carried out, over a wide range of Reynolds numbers, by using a novel three-equation, transition-sensitive, turbulence model. Such a model is based on the coupling of an additional transport equation for the so-called laminar kinetic energy (LKE) with the Wilcox k–ω model and it has proven to be effective for transitional, separated-flow configurations of high-lift cascade flows.


2013 ◽  
Vol 712-715 ◽  
pp. 1307-1311
Author(s):  
Lin Lin Wang ◽  
Ge Gao

The saucer-shaped aircraft is a novel aircraft adopting blend-wing-body configuration. The linear perturbation theory based on the classic flight dynamics was used to analyze the longitudinal, lateral and directional flight qualities of the saucer-shaped aircraft under low speed conditions. The flight qualities were given. Meanwhile the aerodynamic characteristics of the saucer-shaped aircraft, the conventional aircraft and the flying wing aircraft were also contrasted to discuss their similarities and differences. The results show that the saucer-shaped aircraft has stable longitudinal mode, rollover mode and Dutch roll mode. The spiral mode is unstable. The saucer-shaped aircraft exhibits superior flight qualities and excellent comprehensive performances.


Sign in / Sign up

Export Citation Format

Share Document