scholarly journals Why the Michelson-Morley Experiment Cannot Observe the Movement of Interference Fringe

OALib ◽  
2021 ◽  
Vol 08 (11) ◽  
pp. 1-9
Author(s):  
Tony Yuan
Author(s):  
Roberto Lalli

This chapter re-examines the view widely held by physicists that the luminiferous ether became an outdated concept in the early twentieth century and that Albert Einstein’s special relativity killed it. A second common narrative is that the null result of the 1887 Michelson–Morley ether-drift experiment led to Einstein’s theory and the demise of the ether. On the basis of these two simplified narratives, it has become part of the physicists’ ‘imagined past’ that the Michelson–Morley experiment provided the key evidence decreeing the end of the ether. Using scientometrics, this chapter argues that the first part of this idealised narrative is misleading and that the two parts of this narrative are deeply intertwined, as both had historical roots in the reception of Einstein’s relativity theories. In this perspective, the well-known episode of Dayton C. Miller’s repetition of the Michelson–Morley experiment in the 1920s appears in a new light.


2014 ◽  
Vol 494-495 ◽  
pp. 1274-1277
Author(s):  
Kan Liu ◽  
Hao You

This article introduces a measurement system based on LabVIEW used for optical interference fringe on micro-fluidic chips. This system mainly uses cameras to capture real-time images of wedge interference fringe on micro-fluidic chips, then the collected images will be binarized by LabVIEW. The processed images will be divided by zone , determine the flatness and gap thickness of the micro-fluidic chips by interference fringes with different directions of deflection and numbers. Finally, feedback from measured data will be used to adjust the flatness and gap thickness of micro-fluidic chips in order to meet the requirement of tests.


Author(s):  
T. Thuering ◽  
M. Stampanoni

The monochromatic and polychromatic performance of a grating interferometer is theoretically analysed. The smallest detectable refraction angle is used as a metric for the efficiency in acquiring a differential phase-contrast image. Analytical formulae for the visibility and the smallest detectable refraction angle are derived for Talbot-type and Talbot–Lau-type interferometers, respectively, providing a framework for the optimization of the geometry. The polychromatic performance of a grating interferometer is investigated analytically by calculating the energy-dependent interference fringe visibility, the spectral acceptance and the polychromatic interference fringe visibility. The optimization of grating interferometry is a crucial step for the design of application-specific systems with maximum performance.


Optik ◽  
2012 ◽  
Vol 123 (9) ◽  
pp. 761-764 ◽  
Author(s):  
Zhigang Han ◽  
Lei Chen ◽  
Lili Shi ◽  
Jianxin Li ◽  
Zhaodong Liu

Sign in / Sign up

Export Citation Format

Share Document