scholarly journals Geodetic Number and Geo-Chromatic Number of 2-Cartesian Product of Some Graphs

2022 ◽  
Vol 12 (01) ◽  
pp. 1-16
Author(s):  
Medha Itagi Huilgol ◽  
B. Divya
10.37236/160 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Daniel Král' ◽  
Douglas B. West

Let ${\cal G}$ be a class of graphs. A $d$-fold grid over ${\cal G}$ is a graph obtained from a $d$-dimensional rectangular grid of vertices by placing a graph from ${\cal G}$ on each of the lines parallel to one of the axes. Thus each vertex belongs to $d$ of these subgraphs. The class of $d$-fold grids over ${\cal G}$ is denoted by ${\cal G}^d$. Let $f({\cal G};d)=\max_{G\in{\cal G}^d}\chi(G)$. If each graph in ${\cal G}$ is $k$-colorable, then $f({\cal G};d)\le k^d$. We show that this bound is best possible by proving that $f({\cal G};d)=k^d$ when ${\cal G}$ is the class of all $k$-colorable graphs. We also show that $f({\cal G};d)\ge{\left\lfloor\sqrt{{d\over 6\log d}}\right\rfloor}$ when ${\cal G}$ is the class of graphs with at most one edge, and $f({\cal G};d)\ge {\left\lfloor{d\over 6\log d}\right\rfloor}$ when ${\cal G}$ is the class of graphs with maximum degree $1$.


2007 ◽  
Vol 44 (1) ◽  
pp. 49-55
Author(s):  
Mekkia Kouider ◽  
Maryvonne Mahéo

In this paper we study the b -chromatic number of the cartesian product of two graphs. The b -chromatic number of a graph G is defined as the maximum number k of colors that can be used to color the vertices of G , such that we obtain a proper coloring and each color i has at least one representative χi adjacent to a vertex of every color j , 1 ≦ j ≠ i ≦ k . In this paper we get ρ( G□H ) ≦ ρ( G )( nH + 1) + Δ( H ) + 1, when the girth of G is assumed to be greater than or equal to 7.


2013 ◽  
Vol 2 (1) ◽  
pp. 14
Author(s):  
Mariza Wenni

Let G and H be two connected graphs. Let c be a vertex k-coloring of aconnected graph G and let = fCg be a partition of V (G) into the resultingcolor classes. For each v 2 V (G), the color code of v is dened to be k-vector: c1; C2; :::; Ck(v) =(d(v; C1); d(v; C2); :::; d(v; Ck)), where d(v; Ci) = minfd(v; x) j x 2 Cg, 1 i k. Ifdistinct vertices have distinct color codes with respect to , then c is called a locatingcoloring of G. The locating chromatic number of G is the smallest natural number ksuch that there are locating coloring with k colors in G. The Cartesian product of graphG and H is a graph with vertex set V (G) V (H), where two vertices (a; b) and (a)are adjacent whenever a = a0and bb02 E(H), or aa0i2 E(G) and b = b, denotedby GH. In this paper, we will study about the locating chromatic numbers of thecartesian product of two paths, the cartesian product of paths and complete graphs, andthe cartesian product of two complete graphs.


Author(s):  
S. Akbari ◽  
M. CHAVOOSHI ◽  
M. Ghanbari ◽  
S. Taghian

A proper vertex coloring of a graph [Formula: see text] is called a star coloring if every two color classes induce a forest whose each component is a star, which means there is no bicolored [Formula: see text] in [Formula: see text]. In this paper, we show that the Cartesian product of any two cycles, except [Formula: see text] and [Formula: see text], has a [Formula: see text]-star coloring.


2015 ◽  
Vol 50 ◽  
pp. 243-248
Author(s):  
Flavia Bonomo ◽  
Ivo Koch ◽  
Pablo Torres ◽  
Mario Valencia-Pabon

2020 ◽  
Vol 39 (1) ◽  
pp. 1073-1080
Author(s):  
Isnaini Rosyida ◽  
Widodo ◽  
Ch. Rini Indrati ◽  
Diari Indriati

2019 ◽  
Vol 11 (2) ◽  
pp. 20
Author(s):  
Huifen Ge ◽  
Zhao Wang ◽  
Jinyu Zou

A vertex subset S of a graph is called a strong geodetic set if there exists a choice of exactly one geodesic for each pair of vertices of S in such a way that these (|S| 2) geodesics cover all the vertices of graph G. The strong geodetic number of G, denoted by sg(G), is the smallest cardinality of a strong geodetic set. In this paper, we give an upper bound of strong geodetic number of the Cartesian product graphs and study this parameter for some Cartesian product networks.


2012 ◽  
Vol 11 (4) ◽  
pp. 43-58
Author(s):  
T N Janakiraman ◽  
M Poobalaranjani

Let G be a simple graph with vertex set V and edge set E. A Set S Í V is said to be a chromatic preserving set or a cp-set if χ(<S>) = χ(G) and the minimum cardinality of a cp-set in G is called the chromatic preserving number or cp-number of G and is denoted by cpn(G). A cp-set of cardinality cpn(G) is called a cpn-set. A subset S of V is said to be a dom- chromatic set (or a dc-set) if S is a dominating set and χ(<S>) = χ(G). The minimum cardinality of a dom-chromatic set in a graph G is called the dom-chromatic number (or dc- number) of G and is denoted by γch(G). The Kronecker product G1 Ù G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph G with vertex set V1 x V2 and any two distinct vertices (u1, v1) and (u2, v2) of G are adjacent if u1u2 Î E1 and v1v2 Î E2. The Cartesian product G1 x G2 is the graph with vertex set V1 x V2 where any two distinct vertices (u1, v1) and (u2, v2) are adjacent whenever (i) u1 = u2 and v1v2 Î E2 or (ii) u1u2 Î E1 and v1 = v2. These two products have no common edges. They are almost like complements but not exactly. In this paper, we discuss the behavior of the cp-number and dc-number and their bounds for product of paths in the two cases. A detailed comparative study is also done.


Sign in / Sign up

Export Citation Format

Share Document