scholarly journals Post-Buckling Behavior of Laminated Composite Cylindrical Shells Subjected to Axial, Bending and Torsion Loads

2015 ◽  
Vol 03 (04) ◽  
pp. 185-194 ◽  
Author(s):  
Yengula Venkata Narayana ◽  
Jagadish Babu Gunda ◽  
Ravinder Reddy Pinninti ◽  
Markandeya Ravvala
2018 ◽  
Vol 877 ◽  
pp. 453-459
Author(s):  
B. Angelina Catherine ◽  
R.S. Priyadarsini

Buckling is a prominent condition of instability caused to a shell structure as a result of axial loadings. The process of buckling becomes more complex while analyzing thin walled structures like shells. Today such thin walled laminated composite shells are gaining more importance in many defense and industrial applications since they have greater structural efficiency and performance in relation to isotropic structures. Comprehensive understanding of the buckling response of shell structures is necessary to assure the integrity of these shells during their service life. The presence of defects, such as cracks, may severely compromise their buckling behavior and jeopardize the structural integrity. This work aims in conducting numerical analysis of cracked GFRP (Glass fibre-reinforced polymer) composite cylindrical shells under combined loading to study the effect of crack size on the buckling behavior of laminated composite cylindrical shells with different lay-up sequences. The numerical analyses were carried out using the finite element software, ABAQUS in order to predict the buckling behaviour of cracked laminated composite cylinders subject to different combinations of axial compression, torsion, internal pressure and external pressure from the interaction buckling curves.


2011 ◽  
Vol 121-126 ◽  
pp. 43-47
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran ◽  
Roya Kohandel

In this study, the elastic buckling behavior of clamped laminated composite cylindrical shells under external pressure was studied. The Finite Element Method (FEM) was used to predict the critical elastic buckling pressure behavior when composite cylindrical shells were subjected to external pressure. The edges of the cylindrical shell ends were completely constrained to simulate clamped end conditions. The influences of parameters such as wall thickness, fiber angle, number of layers and L/R ratio of laminated composite cylindrical shells on critical buckling pressure were studied. It has been found that the under external pressure, the thickness and the fiber angle of the layers have the most significant effect on the critical buckling pressure.


2011 ◽  
Vol 121-126 ◽  
pp. 48-54 ◽  
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran ◽  
Roya Kohandel ◽  
Ali Alibeigloo

In this study, the buckling behavior of optimum laminated composite cylindrical shells subjected to axial compression and external pressure are studied. The cylindrical shells are composed of multi orthotropic layers that the principal axis gets along with the shell axis (x). The number of layers and the fiber orientation of layers are selected as optimization design variables with the aim to find the optimal laminated composite cylindrical shells. The optimization procedure was formulated with the objective of finding the highest buckling pressure. The Genetic Algorithm (GA) and Imperialist Competitive Algorithm (ICA) are two optimization algorithms that are used in this optimization procedure and the results were compared. Also, the effect of materials properties on buckling behavior was analyzed and studied.


1999 ◽  
Author(s):  
Hayder A. Rasheed ◽  
John L. Tassoulas

Abstract Interfacial defects, in the form of cracks or layer separation, may occur in composite cylindrical shells during the manufacturing process, transportation or service life. Such defects are expected to affect the integrity of laminated composite structural elements and may reduce their capacity to resist the applied loads. In this article, the growth of pre-existing cracks in moderately thick composite cylinders is studied for the case of externally applied fluid pressure. The cracks considered separate thick layers, which are unlikely to buckle locally prior to the final collapse of the structural component. The potential of growth is assessed by computing the energy release rate. It is found that any initial out-of roundness imperfection introduces a shear force at the crack tip by causing the cross section to ovalize slightly. The energy release rate is found to vary exponentially with the applied pressure, when geometric nonlinearities are considered. The analysis is applied to a carbon/glass-fiber hybrid composite tube and the parameters influencing growth are examined. Crack length, through the thickness location, circumferential location relative to the ovalization orientation and the amount of imperfection are found to control the nature of growth. Unstable as well as stable crack growth and arrest cases are observed for various combinations of these parameters.


Sign in / Sign up

Export Citation Format

Share Document