Influence of Crack on the Instability of GFRP Composite Cylindrical Shells under Combined Loading

2018 ◽  
Vol 877 ◽  
pp. 453-459
Author(s):  
B. Angelina Catherine ◽  
R.S. Priyadarsini

Buckling is a prominent condition of instability caused to a shell structure as a result of axial loadings. The process of buckling becomes more complex while analyzing thin walled structures like shells. Today such thin walled laminated composite shells are gaining more importance in many defense and industrial applications since they have greater structural efficiency and performance in relation to isotropic structures. Comprehensive understanding of the buckling response of shell structures is necessary to assure the integrity of these shells during their service life. The presence of defects, such as cracks, may severely compromise their buckling behavior and jeopardize the structural integrity. This work aims in conducting numerical analysis of cracked GFRP (Glass fibre-reinforced polymer) composite cylindrical shells under combined loading to study the effect of crack size on the buckling behavior of laminated composite cylindrical shells with different lay-up sequences. The numerical analyses were carried out using the finite element software, ABAQUS in order to predict the buckling behaviour of cracked laminated composite cylinders subject to different combinations of axial compression, torsion, internal pressure and external pressure from the interaction buckling curves.

2011 ◽  
Vol 121-126 ◽  
pp. 43-47
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran ◽  
Roya Kohandel

In this study, the elastic buckling behavior of clamped laminated composite cylindrical shells under external pressure was studied. The Finite Element Method (FEM) was used to predict the critical elastic buckling pressure behavior when composite cylindrical shells were subjected to external pressure. The edges of the cylindrical shell ends were completely constrained to simulate clamped end conditions. The influences of parameters such as wall thickness, fiber angle, number of layers and L/R ratio of laminated composite cylindrical shells on critical buckling pressure were studied. It has been found that the under external pressure, the thickness and the fiber angle of the layers have the most significant effect on the critical buckling pressure.


2011 ◽  
Vol 121-126 ◽  
pp. 48-54 ◽  
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran ◽  
Roya Kohandel ◽  
Ali Alibeigloo

In this study, the buckling behavior of optimum laminated composite cylindrical shells subjected to axial compression and external pressure are studied. The cylindrical shells are composed of multi orthotropic layers that the principal axis gets along with the shell axis (x). The number of layers and the fiber orientation of layers are selected as optimization design variables with the aim to find the optimal laminated composite cylindrical shells. The optimization procedure was formulated with the objective of finding the highest buckling pressure. The Genetic Algorithm (GA) and Imperialist Competitive Algorithm (ICA) are two optimization algorithms that are used in this optimization procedure and the results were compared. Also, the effect of materials properties on buckling behavior was analyzed and studied.


2015 ◽  
Vol 03 (04) ◽  
pp. 185-194 ◽  
Author(s):  
Yengula Venkata Narayana ◽  
Jagadish Babu Gunda ◽  
Ravinder Reddy Pinninti ◽  
Markandeya Ravvala

1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


Sign in / Sign up

Export Citation Format

Share Document